Discriminative Modeling Topics

April 2, 2013
Menu du Jour

• MaxEnt phrase reordering
  (Xiong et al., 2006)

• Discriminative lexicon models
  (Mauser et al., 2009)

• Translation as CRFs
  (Blunsom et al., 2008)
SCFGs: A problem

A → bruja | witch  0.2
A → verde | green  0.2
A → A A | 1 2  0.6
A → A A | 2 I  0.2
SCFGs: A problem

A → bruja | witch 0.2
A → verde | green 0.2
A → A A | 1 2 0.6
A → A A | 2 1 0.2

0.6
SCFGs: A problem

A → bruja | witch 0.2
A → verde | green 0.2
A → A A | 1 2 0.6
A → A A | 2 1 0.2

0.6x0.2
SCFGs: A problem

A → bruja | witch 0.2
A → verde | green 0.2
A → A A | 1 2 0.6
A → A A | 2 1 0.2

0.6 x 0.2 x 0.2 = 0.024
SCFGs: A problem

\[
\begin{align*}
A & \rightarrow \text{bruja} \mid \text{witch} \quad 0.2 \\
A & \rightarrow \text{verde} \mid \text{green} \quad 0.2 \\
A & \rightarrow AA \mid 1 2 \quad 0.6 \\
A & \rightarrow AA \mid 2 1 \quad 0.2
\end{align*}
\]

\[
0.6 \times 0.2 \times 0.2 = 0.024 \quad \text{witch} \quad \text{green}
\]
SCFGs: A problem

A → bruja | witch 0.2
A → verde | green 0.2
A → A A | 1 2 0.6
A → A A | 2 1 0.2

\[0.2 \times 0.2 \times 0.2 = 0.008\]
SCFGs: A problem

A → bruja | witch 0.2
A → verde | green 0.2
A → A A | 1 2 0.6
A → A A | 2 1 0.2

0.2×0.2×0.2 = 0.008

Context-free rules apply independent of context.
Some solutions

- More sophisticated grammars
  \[ A \rightarrow A A \mid 2 \]
Some solutions

- More sophisticated grammars

\[
A \rightarrow AA | 2 \ 1
\]

\[
NP \rightarrow NN \ JJ | 2 \ 1
\]
Some solutions

• More sophisticated grammars

\[ A \rightarrow AA | 2 \]

\[ NP \rightarrow NN JJ | 2 \]

What are the problems with this?
Some solutions

- More sophisticated grammars
  \[ A \rightarrow AA | 2 \]
  \[ NP \rightarrow NN JJ | 2 \]

- Discriminative “parsing”
  \[ p(A = \{\leftarrow, \rightarrow\} | f, A_{\text{left}}, A_{\text{right}}) \]

bruja verde
Some solutions

• More sophisticated grammars

\[ A \rightarrow AA | 2 \]
\[ NP \rightarrow NN JJ | 2 \]

• Discriminative “parsing”

\[ p(A = \{\leftarrow, \rightarrow\} | f, A_{\text{left}}, A_{\text{right}}) \]

Source
Left child
Right child

bruja
derde
Key Insight

- PCFGs are generative models of text (parallel text)
- In translation, the text is given: use discriminative models
- Xiong et al. propose a very simple approach:
  - Standard translation model (phrase based)
  - Standard (uniform) segmentation model
  - Standard n-gram language model
- *Innovation*: every time you form a constituent, predict whether it should be *monotone* or *inverted*
Again, we reduce a major component of translation to **binary classification**.
MaxEnt Model

\[
p(A = \leftarrow | \text{bruja verde}, (0, 1), (1, 2))
\]

This is a lot of conditioning

\[
p(A = \leftarrow, \rightarrow | f, A_{\text{left}}, A_{\text{right}}) = \frac{1}{Z} \exp \mathbf{w}^\top \phi(f, A_{\text{left}}, A_{\text{right}})
\]

Again, we reduce a major component of translation to \textbf{binary classification}. 
Training the Model

• What do we need to train the model?
Training the Model

• What do we need to train the model?

• How do we extract training examples from the training data?
Extract examples from word aligned training data.
## Results

<table>
<thead>
<tr>
<th>Condition</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>monotonic</td>
<td>20.1</td>
</tr>
<tr>
<td>no-model</td>
<td>19.6</td>
</tr>
<tr>
<td>size of constituent</td>
<td>20.9</td>
</tr>
<tr>
<td>MaxEnt</td>
<td>22.2</td>
</tr>
</tbody>
</table>
General Insights

• Decoders make local translation and reordering decisions
  • Standard approach: relative frequency
  • Alternative: using “local classifiers”
  • Challenge: extract (noisy) training instances from the training data
  • Benefits: no decoding required for training these local classifiers

• The source is given: use it!
Questions?
Modeling the Lexicon

bestehen → consist 0.5
       → insist 0.4
       → pass 0.1
Modeling the Lexicon

Es wird morgen eine Prüfung geben

Ob ich bestehen werde?

There’s a test tomorrow.

Will I pass?

bestehen

consist 0.5

insist 0.4

pass 0.1
Modeling the Lexicon

Es wird morgen eine Prüfung geben
Ob ich bestehen werde?

There’s a test tomorrow.
Will I pass?

Whether I shall consist?
Modeling the Lexicon

\[ p_{\text{new model}}(\text{pass} \mid \text{bestehen}, C = \text{Prüfung}) > p(w \mid \text{bestehen}) \]

Es wird morgen eine Prüfung geben

Ob ich bestehen werde?

Goal:

There's a test tomorrow.

Will I pass?

Whether I shall consist?
The DWL

- “Discriminative Word Lexicon”

\[ p(\mathcal{E} \mid \mathcal{F}) \]

Set of English words \quad Set of Foreign words
The DWL

- “Discriminative Word Lexicon”

\[
p(\mathcal{E} \mid \mathcal{F}) = \prod_{e \in \mathcal{E}} p(\text{contains } e \mid \mathcal{F}) \times \prod_{e \in \mathcal{E}^C} (1 - p(\text{contains } e \mid \mathcal{F}))
\]

Model inclusion as conditionally independent binary decisions
Binary Classifiers

• Downside
  • Independence assumptions are harsh

• Upside
  • Training for every word in the vocabulary can be carried out in parallel
Training the Model

• What do we need to train the model?

• How do we extract training examples from the training data?
\[ \Sigma = \{ \text{the, and, of, cat, \ldots, pass, test, \ldots resulting, xylophone} \} \]
\[ \Sigma = \{ \text{the, and, of, cat, \ldots, pass, test, \ldots resulting, xylophone} \} \]

**Sentence pair:**

you will pass the test \hspace{1cm} du wirst die Prüfung bestehen
\[ \Sigma = \{ \text{the, and, of, cat, \ldots, pass, test, \ldots resulting, xylophone} \} \]

Sentence pair:

*you will pass the test*  
*du wirst die Pruefung bestehen*

<table>
<thead>
<tr>
<th>Classifier</th>
<th>(y)</th>
<th>Feature Vector ((x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>pass?</td>
<td>+</td>
<td>du=1 wirst=1 Pruefung=1 besten=1</td>
</tr>
<tr>
<td>will?</td>
<td>+</td>
<td>du=1 wirst=1 Pruefung=1 besten=1</td>
</tr>
<tr>
<td>insist?</td>
<td>-</td>
<td>du=1 wirst=1 Pruefung=1 besten=1</td>
</tr>
<tr>
<td>insist?</td>
<td>-</td>
<td>du=1 wirst=1 Pruefung=1 besten=1</td>
</tr>
<tr>
<td>cat?</td>
<td>-</td>
<td>du=1 wirst=1 Pruefung=1 besten=1</td>
</tr>
<tr>
<td>xylophone?</td>
<td>-</td>
<td>du=1 wirst=1 Pruefung=1 besten=1</td>
</tr>
</tbody>
</table>
\[ \Sigma = \{ \text{the, and, of, cat, \ldots, pass, test, \ldots resulting, xylophone} \} \]

**Sentence pair:**

\textit{you will pass the test} \hspace{1cm} \textit{du wirst die Pruefung bestehen}

<table>
<thead>
<tr>
<th>Classifier</th>
<th>( y )</th>
<th>Feature Vector ((x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>pass?</td>
<td>+</td>
<td>\textmd{(du=1\ wirst=1\ Pruefung=1\ besten=1)}</td>
</tr>
<tr>
<td>will?</td>
<td>+</td>
<td>\textmd{(du=1\ wirst=1\ Pruefung=1\ besten=1)}</td>
</tr>
<tr>
<td>insist?</td>
<td>-</td>
<td>\textmd{(du=1\ wirst=1\ Pruefung=1\ besten=1)}</td>
</tr>
<tr>
<td>insist?</td>
<td>-</td>
<td>\textmd{(du=1\ wirst=1\ Pruefung=1\ besten=1)}</td>
</tr>
<tr>
<td>cat?</td>
<td>-</td>
<td>\textmd{(du=1\ wirst=1\ Pruefung=1\ besten=1)}</td>
</tr>
<tr>
<td>xylophone?</td>
<td>-</td>
<td>\textmd{(du=1\ wirst=1\ Pruefung=1\ besten=1)}</td>
</tr>
</tbody>
</table>

\(O(N \times V)\) training instances
Rescoring with the DWL

- The DWL assigns probabilities to **sets** of words
  - Once a word is used once, subsequent uses are “free”
  - This makes dynamic programming difficult
- A simple strategy: reranking
  - Get $k$-best lists from baseline decoder, compute DWL score on each entry
  - Train a second model (using PRO, MERT, etc.) as if the $k$-best lists were the decoder
  - Search errors are very possible!
### Arabic-English

<table>
<thead>
<tr>
<th>Condition</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>42.0</td>
</tr>
<tr>
<td>+DWL</td>
<td>42.4</td>
</tr>
</tbody>
</table>

### Chinese-English

<table>
<thead>
<tr>
<th>Condition</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>25.3</td>
</tr>
<tr>
<td>+DWL</td>
<td>26.2</td>
</tr>
<tr>
<td>Source</td>
<td>目前，事故抢险组正在紧急恢复通风系统。</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Baseline</td>
<td>at present, the accident and rescue teams are currently emergency recovery ventilation systems.</td>
</tr>
<tr>
<td>DWL</td>
<td>at present, the emergency rescue teams are currently restoring the ventilation system.</td>
</tr>
<tr>
<td>Reference</td>
<td>right now, the accident emergency rescue team is making emergency repair on the ventilation system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DWL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>emergency</td>
<td>0.894</td>
</tr>
<tr>
<td>currently</td>
<td>0.330</td>
</tr>
<tr>
<td>current</td>
<td>0.175</td>
</tr>
<tr>
<td>emergencies</td>
<td>0.133</td>
</tr>
<tr>
<td>present</td>
<td>0.133</td>
</tr>
<tr>
<td>accident</td>
<td>0.119</td>
</tr>
<tr>
<td>recovery</td>
<td>0.053</td>
</tr>
<tr>
<td>group</td>
<td>0.046</td>
</tr>
<tr>
<td>dealing</td>
<td>0.042</td>
</tr>
<tr>
<td>ventilation</td>
<td>0.034</td>
</tr>
</tbody>
</table>
Possible Extensions

- Condition on more context than the sentence (e.g., document)
- Model units larger than words (e.g., phrases)
- Model only words/phrases that have ambiguous translations
  - Measure of ambiguity: entropy
Questions?
Translation as CRFs
Translation as CRFs

No linear chains
CRFs on Synchronous Trees

- Model: discriminate “good” parses under an SCFG from bad ones
- Challenges:
  - What is a good parse?
    - One that produces a good translation
  - What is a good translation?
    - The one we see in the training data
  - What about the zillions of ways to derive a sentence pair?
    - Let’s marginalize them
  - What about non-literal translations?
    - Regularize so we don’t memorize “bad” stuff
Which Derivation to Optimize?

the red hat
|
le chapeau
Which Derivation to Optimize?

the red hat
  /
le chapeau

the red hat
  /
le chapeau
Which Derivation to Optimize?
Which Derivation to Optimize?

```
| the red hat | the red hat |
| le chapeau  | le chapeau  |
```

```
| the red hat | the red hat |
| le chapeau  | le chapeau  |
```
Parametric Form

Conditional probability of a derivation

\[ p_{\Lambda}(d, e|f) = \frac{\exp \sum_k \lambda_k H_k(d, e, f)}{Z_{\Lambda}(f)}. \]

Conditional probability of a translation
Features

The features must decompose with the rules:

\[ H_k(d, e, f) = \sum_{r \in d} h_k(f, r, q(r, d)) \]

- Any part of the source may be used
  - Source syntax
  - Morphology
  - Lexical context
  - POS information
Training

\[ \mathcal{L} = \sum_{(e,f) \in \mathcal{D}} \sum_d \log p_\Lambda(e, d \mid f) + \sum_m \frac{\lambda_m^2}{2\sigma^2} \]
Training

\[ \mathcal{L} = \sum_{(e,f) \in D} \sum_d \log p_{\Lambda}(e, d \mid f) + \sum_m \frac{\lambda_m^2}{2\sigma^2} \]

Differentiable:

\[ \frac{\partial \mathcal{L}}{\partial w_i} = \sum_{(e,f) \in D} \mathbb{E}_{p_{\Lambda}(e,d|f)} h_i(e,d,f) - \mathbb{E}_{p_{\Lambda}(d|e,f)} h_i(e,d,f) - \frac{\lambda_i}{\sigma^2} \]
Inference

• How do we compute the following feature expectations?

\[
\frac{\partial L}{\partial w_i} = \sum_{(e,f) \in D} \mathbb{E}_{p_X(e,d|f)} h_i(e,d,f) - \mathbb{E}_{p_X(d|e,f)} h_i(e,d,f) - \frac{\lambda_i}{\sigma^2}
\]
## Effect of Regularization

<table>
<thead>
<tr>
<th>Grammar Rules</th>
<th>ML ($\sigma^2 = \infty$)</th>
<th>MAP ($\sigma^2 = 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle X \rangle \rightarrow \langle carte, map \rangle$</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle carte, notice \rangle$</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle sur, on \rangle$</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle la, the \rangle$</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle table, table \rangle$</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle table, chart \rangle$</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle carte sur, notice on \rangle$</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle carte sur, map on \rangle$</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle sur la, on the \rangle$</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle la table, the table \rangle$</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\langle X \rangle \rightarrow \langle la table, the chart \rangle$</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

**Training data:**
- carte sur la table $\leftrightarrow$ map on the table
- carte sur la table $\leftrightarrow$ notice on the chart
<table>
<thead>
<tr>
<th>Condition</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiero -LM</td>
<td>28.1</td>
</tr>
<tr>
<td>Hiero +LM</td>
<td>32.0</td>
</tr>
<tr>
<td>CRF - max deriv</td>
<td>25.8</td>
</tr>
<tr>
<td>CRF - max trans</td>
<td>27.7</td>
</tr>
</tbody>
</table>
Questions?