Decoding and Inference with Syntactic Translation Models

April 8, 2014
CFGs

\[
\begin{align*}
S & \rightarrow \ NP \ VP \\
VP & \rightarrow \ NP \ V \\
V & \rightarrow \ \text{tabeta} \\
NP & \rightarrow \ \text{jon-ga} \\
NP & \rightarrow \ \text{ringo-o} \\
\end{align*}
\]

Output: jon-ga ringo-o tabeta
Synchronous CFGs

\[
S \rightarrow NP \ VP
\]
\[
VP \rightarrow NP \ V
\]
\[
V \rightarrow tabeta
\]
\[
NP \rightarrow jon-ga
\]
\[
NP \rightarrow ringo-o
\]
Synchronous CFGs

\[
\begin{align*}
S & \rightarrow NP \ VP : \ \boxed{1} \ \boxed{2} \\
VP & \rightarrow NP \ V : \ \boxed{2} \ \boxed{1}
\end{align*}
\]
(monotonic)

\[
\begin{align*}
V & \rightarrow \text{tabeta} : \ \text{ate} \\
NP & \rightarrow \text{jon-ga} : \ \text{John} \\
NP & \rightarrow \text{ringo-o} : \ \text{an apple}
\end{align*}
\]
(inverted)
Synchronous CFGs

\[
\begin{align*}
S & \rightarrow \text{NP VP} : 1 \ 2 \quad \text{(monotonic)} \\
\text{VP} & \rightarrow \text{NP V} : 2 \ 1 \quad \text{(inverted)} \\
\text{V} & \rightarrow \text{tabeta} : \text{ate} \\
\text{NP} & \rightarrow \text{jon-ga} : \text{John} \\
\text{NP} & \rightarrow \text{ringo-o} : \text{an apple}
\end{align*}
\]
Synchronous generation

Output: (jon-ga ringo-o tabeta : John ate an apple)
Translation as parsing

Parse source

NP VP
jon-ga ringo-o tabeta

Project to target

NP VP
NP V NP
John ate an apple
A closer look at parsing

- Parsing is usually done with dynamic programming
- Share common computations and structure
- Represent exponential number of alternatives in polynomial space
- With SCFGs there are two kinds of ambiguity
 - source parse ambiguity
 - translation ambiguity
- parse forests can represent both
A closer look at parsing

• Any monolingual parser can be used (most often: CKY / “dotted” CKY variants)

• Parsing complexity is $O(|n^3|)$
 • cubic in the length of the sentence (n^3)
 • cubic in the number of non-terminals ($|G|^3$)
 • adding nonterminal types increases parsing complexity substantially!

• With few NTs, exhaustive parsing is tractable
“If A and B are true with weights u and v, and phi is also true, then C is true with weight w.\)
Example: CKY

Inputs:

\[f = \langle f_1, f_2, \ldots, f_e \rangle \]

\[G \quad \text{Context-free grammar in Chomsky normal form.} \]

Item form:

\[[X, i, j] \quad \text{A subtree rooted with NT type } X \text{ spanning } i \text{ to } j \text{ has been recognized.} \]
Example: CKY

Goal:

\[[S, 0, \ell] \]

Axioms:

\[
[X, i - 1, i] : w \quad (X \xrightarrow{w} f_i) \in G
\]

Inference rules:

\[
[X, i, k] : u \\ [Y, k, j] : v \\
\overline{[Z, i, j] : u \times v \times w} \\
(Z \xrightarrow{w} XY) \in G
\]
I saw her duck.
I saw her duck
I saw her duck.
S → PRP VP
VP → V NP
VP → V SBAR
SBAR → PRP V
NP → PRP NN
V → saw
NN → duck
V → duck
PRP → I
PRP → her

I saw her duck
I saw her duck.
S → PRP VP
VP → V NP
VP → V SBAR
SBAR → PRP V
NN → PRP NN
V → saw
NN → duck
V → duck
PRP → I
PRP → her

I
saw
her
duck
I saw her duck.
What is this object?

I saw her duck
Semantics of hypergraphs

- Generalization of directed graphs
- Special node designated the “goal”
- Every edge has a single head and 0 or more tails (the arity of the edge is the number of tails)
- Node labels correspond to LHS’s of CFG rules
- A derivation is the generalization of the graph concept of path to hypergraphs
- Weights multiply along edges in the derivation, and add at nodes (cf. semiring parsing)
Edge labels

- Edge labels may be a mix of terminals and substitution sites (non-terminals)
- In translation hypergraphs, edges are labeled in both the source and target languages
- The number of substitution sites must be equal to the arity of the edge and must be the same in both languages
- The two languages may have different orders of the substitution sites
- There is no restriction on the number of terminal symbols
Edge labels

\{ (la lectura \ de\ ayer : yesterday 's reading),
 (la lectura \ de\ ayer : reading from yesterday) \}
A Lingua Franca for MT

- Translation hypergraphs are a *lingua franca* for translation search spaces
- Note that FST lattices are a special case
- Decoding problem: how do I build a translation hypergraph?
- For SCFG-translation: just parse
Tree-to-string Translation

- How do we generate a hypergraph for a tree-to-string translation model?
 - Simple linear-time (given a fixed translation model) top-down matching algorithm
 - Recursively cover “uncovered” sites in tree
 - Each node in the input tree becomes a node in the translation forest
- For details, Huang et al. (AMTA, 2006) and Huang et al. (EMNLP, 2010)
\[
\begin{align*}
S(x_1:NP \ x_2:VP) & \rightarrow x_1 \ x_2 \\
VP(x_1:NP \ x_2:V) & \rightarrow x_2 \ x_1 \\
\text{tabeta} & \rightarrow \text{ate} \\
\text{ringo-o} & \rightarrow \text{an apple} \\
\text{jon-ga} & \rightarrow \text{John}
\end{align*}
\]
\[S(x_1:NP \ x_2:VP) \rightarrow x_1 \ x_2 \]

\[VP(x_1:NP \ x_2:V) \rightarrow x_2 \ x_1 \]

\[\text{tabeta} \rightarrow \text{ate} \]

\[\text{ringo-o} \rightarrow \text{an apple} \]

\[\text{jon-ga} \rightarrow \text{John} \]
S(\(x_1:NP\) \(x_2:VP\)) \(\rightarrow\) \(x_1\) \(x_2\)

VP(\(x_1:NP\) \(x_2:V\)) \(\rightarrow\) \(x_2\) \(x_1\)

\textit{tabeta} \(\rightarrow\) \textit{ate}

\textit{ringo-o} \(\rightarrow\) \textit{an apple}

\textit{jon-ga} \(\rightarrow\) \textit{John}
S(x₁:NP x₂:VP) → x₁ x₂
VP(x₁:NP x₂:V) → x₂ x₁

tabeta → ate
ringo-o → an apple
jon-ga → John
\[
S(x_1:NP \ x_2:VP) \rightarrow x_1 \ x_2 \\
VP(x_1:NP \ x_2:V) \rightarrow x_2 \ x_1
\]
\[
tabeta \rightarrow \text{ate}
\]
\[
ringo-o \rightarrow \text{an apple}
\]
\[
jon-ga \rightarrow \text{John}
\]
S(\(x_1:NP\) \(x_2:VP\)) \(\rightarrow\) \(x_1\) \(x_2\)

VP(\(x_1:NP\) \(x_2:V\)) \(\rightarrow\) \(x_2\) \(x_1\)

\textit{tabeta} \(\rightarrow\) \textit{ate}

\textit{ringo-o} \(\rightarrow\) \textit{an apple}

\textit{jon-ga} \(\rightarrow\) \textit{John}
\[
S(x_1:NP \ x_2:VP) \rightarrow x_1 \ x_2 \\
VP(x_1:NP \ x_2:V) \rightarrow x_2 \ x_1
\]

```
tabela \rightarrow ate
ringo-o \rightarrow an \ apple
jon-ga \rightarrow John
```
Working With Hypergraphs
Derivations

d_1 = e_4 e_1 e_3 \quad y(d_1) = yesterday’s reading

d_2 = e_5 e_1 e_3 \quad y(d_2) = reading from yesterday

d_3 = e_4 e_2 e_3 \quad y(d_3) = yesterday’s lecture

d_4 = e_5 e_2 e_3 \quad y(d_4) = lecture from yesterday
Derivations

\[w[d_1] = 0.4 \cdot 0.8 \cdot 0.5 = 0.16 \]

\[w[d_2] = 0.6 \cdot 0.8 \cdot 0.5 = 0.24 \]

\[w[d_3] = 0.4 \cdot 0.2 \cdot 0.5 = 0.04 \]

\[w[d_4] = 0.6 \cdot 0.2 \cdot 0.5 = 0.06 \]
Best Path

- e_1 with weight 0.8 leads to reading.
- e_2 with weight 0.2 leads to lecture.
- e_3 with weight 0.5 leads to yesterday.
- e_4 with weight 0.4 connects to 2's 1.
- e_5 with weight 0.6 connects from 1 to 2.

Nodes connect with arrows indicating the path.
Best Path

0.8 e_1 \rightarrow \text{reading} \rightarrow \text{lecture} \rightarrow 2 \text{'s 1}

0.2 e_2 \rightarrow \text{lecture} \rightarrow 0.4 e_4 \rightarrow \text{from 2}

0.5 e_3 \rightarrow \text{yesterday} \rightarrow 0.6 e_5 \rightarrow 1
Best Path

0.8 \(e_1 \) reading

0.2 \(e_2 \) lecture

0.5 \(e_3 \) yesterday

\(2 \)'s 1

0.4 \(e_4 \)

0.6 \(e_5 \) from 2
Best Path

0.8 \(e_1 \) reading

0.2 \(e_2 \) lecture

0.5 \(e_3 \) yesterday

0.2

0.4 \(e_4 \)

0.6 \(e_5 \)

1 from 2

2's 1
Best Path

\[0.8 e_1 \rightarrow \text{reading} \rightarrow 0.8 \]
\[0.2 e_2 \rightarrow \text{lecture} \rightarrow 0.8 \]
\[0.5 e_3 \rightarrow \text{yesterday} \rightarrow 0.8 \]

\[0.4 e_4 \rightarrow 2 \text{'s} 1 \]
\[0.6 e_5 \rightarrow 1 \text{ from} 2 \]
Best Path

0.8 e_1 reading
0.2 e_2 lecture
0.5 e_3 yesterday

0.8

0.4 e_4

0.6 e_5

2's 1
1 from 2
Best Path

- Reading: $0.8 e_1$
- Lecture: $0.2 e_2$
- Yesterday: $0.5 e_3$

0.8

- $0.4 e_4$
- $0.6 e_5$

2's 1
1 from 2
Best Path

0.8 e_1 reading

0.2 e_2 lecture

0.5 e_3 yesterday

0.8

0.4 e_4

0.6 e_5

2's 1

1 from 2
Best Path

0.8 \(e_1 \) reading

0.2 \(e_2 \) lecture

0.5 \(e_3 \) yesterday

0.8

0.5

0.4 \(e_4 \)

0.6 \(e_5 \)

2's 1

1 from 2
Best Path

0.8 \(e_1 \) reading
0.2 \(e_2 \) lecture
0.5 \(e_3 \) yesterday

0.8

0.5

0.4 \(e_4 \)
0.6 \(e_5 \)

2's 1
1 from 2

reading
lecture
yesterday

Best Path

0.8 e_1 reading

0.2 e_2 lecture

0.5 e_3 yesterday

0.8

0.5

0.4 e_4

0.6 e_5

1 from 2

2's 1
Best Path

$e_1 \rightarrow 0.8 \rightarrow$ reading

$e_2 \rightarrow 0.2 \rightarrow$ lecture

$e_3 \rightarrow 0.5 \rightarrow$ yesterday

$0.8 \leftarrow 2 \text{'s 1}$

$0.4 e_4 \leftarrow 0.6 e_5 \leftarrow 1 \text{ from 2}$
Best Path

\[0.8 \times 0.5 \times 0.4 = 0.16 \]
Best Path

0.8 e_1 reading
0.2 e_2 lecture
0.5 e_3 yesterday

0.8

0.5

0.4 e_4

0.6 e_5

0.16

1 from 2

1 's 2
Best Path

0.8 \times 0.5 \times 0.6 = 0.24
Best Path

\[
0.8 \times 0.5 \times 0.6 = 0.24
\]
Best Path

![Diagram with nodes and edges labeled with probabilities and words: reading, lecture, yesterday, 2's 1, 0.8, 0.5, 0.8, 0.4, 0.6, 0.24.](image)
Best yield: reading from yesterday
Best path: 0.24
Best Path

Best yield: reading from yesterday

Best path: 0.24

\[d_1 = e_4 e_1 e_3 \quad w[d_1] = 0.4 \cdot 0.8 \cdot 0.5 = 0.16 \]
\[d_2 = e_5 e_1 e_3 \quad w[d_2] = 0.6 \cdot 0.8 \cdot 0.5 = 0.24 \]
\[d_3 = e_4 e_2 e_3 \quad w[d_3] = 0.4 \cdot 0.2 \cdot 0.5 = 0.04 \]
\[d_4 = e_5 e_2 e_3 \quad w[d_3] = 0.6 \cdot 0.2 \cdot 0.5 = 0.06 \]
Other Algorithms

• Given a weighted hypergraph

• In the Viterbi (Inside) algorithm, there are two operations

 • Multiplication (extend path)
 • Maximization (chose between paths)

• Semirings generalize these to compute other quantities
Semirings

<table>
<thead>
<tr>
<th>semiring</th>
<th>(\mathbb{K})</th>
<th>(\oplus)</th>
<th>(\otimes)</th>
<th>(0)</th>
<th>(1)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>{0,1}</td>
<td>(\lor)</td>
<td>(\land)</td>
<td>0</td>
<td>1</td>
<td>idempotent</td>
</tr>
<tr>
<td>count</td>
<td>(\mathbb{N}_0 \cup {\infty})</td>
<td>+</td>
<td>(\times)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>probability</td>
<td>(\mathbb{R}_+ \cup {\infty})</td>
<td>+</td>
<td>(\times)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tropical</td>
<td>(\mathbb{R} \cup {-\infty, \infty})</td>
<td>max</td>
<td>+</td>
<td>(-\infty)</td>
<td>0</td>
<td>idempotent</td>
</tr>
<tr>
<td>log</td>
<td>(\mathbb{R} \cup {-\infty, \infty})</td>
<td>(\oplus_{\text{log}})</td>
<td>+</td>
<td>(-\infty)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Inside Algorithm

\[\alpha(q_{goal}) = \bigoplus_{d \in \mathcal{G}} \bigotimes_{e \in d} w(e) \]

1: function \text{INSIDE}(\mathcal{G}, K) \quad \triangleright \mathcal{G} \text{ is an acyclic hypergraph and } K \text{ is a semiring}
2: \text{for } q \text{ in topological order in } \mathcal{G} \text{ do}
3: \quad \text{if } B(q) = \emptyset \text{ then}
4: \quad \quad \alpha(q) \leftarrow 1 \quad \triangleright \text{ assume states with no in-edges are axioms}
5: \quad \text{else}
6: \quad \quad \alpha(q) \leftarrow 0
7: \quad \text{for all } e \in B(q) \text{ do}
8: \quad \quad k \leftarrow w(e)
9: \quad \text{for all } r \in t(e) \text{ do}
10: \quad \quad \quad k \leftarrow k \otimes \alpha(r) \quad \triangleright \text{ all in-coming edges to node } q
11: \quad \quad \alpha(q) \leftarrow \alpha(q) \oplus k
12: \quad \text{return } \alpha
13: \text{for all } r \in t(e) \text{ do}
14: \quad \quad k \leftarrow k \otimes \alpha(r) \quad \triangleright \text{ all tail (previous) nodes of edge } e
15: \quad \alpha(q) \leftarrow \alpha(q) \oplus k
16: \text{return } \alpha
Count Derivations
Count Derivations

\[
e_1 \rightarrow \text{reading}
\]
\[
e_2 \rightarrow \text{lecture}
\]
\[
e_3 \rightarrow \text{yesterday}
\]
\[
2 \text{'s} 1
\]
\[
e_4
\]
\[
e_5
\]
\[
1 \text{ from } 2
\]
Count Derivations

\[e_1 \quad \text{reading} \quad 2 \]

\[e_2 \quad \text{lecture} \quad 2 \]

\[e_3 \quad \text{yesterday} \quad 1 \]

\[2 \text{'s} 1 \]

\[e_4 \quad e_5 \quad 1 \text{ from } 2 \]
Count Derivations

\[2 \times 1 \times 1 = 2 \]
Count Derivations

\[2 \times 1 \times 1 = 2\]
Count Derivations

e_1 \quad \text{reading}
e_2 \quad \text{lecture}
e_3 \quad \text{yesterday}

2 \quad \text{2's 1}

4 \quad \text{1 from 2}
Inside-Outside

1: function OUTSIDE(G, K, α)
 2: for all $q \in \mathcal{G}$ do
 3: \hspace{1em} $\beta(q) \leftarrow \vec{0}$
 4: \hspace{1em} $\beta(q_{goal}) = \vec{1}$
 5: \hspace{1em} for q in reverse topological order in G do
 6: \hspace{2em} for all $e \in B(q)$ do
 7: \hspace{3em} for all $r \in t(e)$ do
 8: \hspace{4em} $k \leftarrow w(e) \otimes \beta(q)$
 9: \hspace{4em} for all $s \in t(e)$ do
 10: \hspace{5em} if $r \neq s$ then
 11: \hspace{6em} $k \leftarrow k \otimes \alpha(s)$
 12: \hspace{5em} $\beta(r) \leftarrow \beta(r) \oplus k$
 13: \hspace{1em} return β

1: function INSIDEOUTSIDE(G, K)
 2: $\alpha \leftarrow $ INSIDE(G, K)
 3: $\beta \leftarrow $ OUTSIDE(G, K, α)
 4: for edge e in G do
 5: \hspace{1em} $\gamma(e) \leftarrow w(e) \otimes \beta(n(e))$
 6: \hspace{1em} for all $q \in t(e)$ do
 7: \hspace{2em} $\gamma(e) \leftarrow \gamma(e) \otimes \alpha(q)$
 8: \hspace{1em} return γ

α is the result of INSIDE(G, K)
all in-coming edges to node q
all tail (previous) nodes of edge e
all tail (previous) nodes of edge e, again
incorporate inside score
compute edge marginals
edge weight and outside score of edge’s head node
inside score of tail nodes
$\gamma(e)$ is the edge marginal of e
Inside-Outside

- Compute lots of interesting quantities
 - The score of the best path through each edge
 - The total number of derivations that contain an edge
 - The total score of all derivations going through an edge
Inference algorithms

- **Viterbi** $O(|E| + |V|)$
 - Find the maximum weighted derivation
 - Requires a partial ordering of weights

- **Inside - outside** $O(|E| + |V|)$
 - Compute the marginal (sum) weight of all derivations passing through each edge/node

- **k-best derivations** $O(|E| + |D_{max}|k \log k)$
 - Enumerate the k-best derivations in the hypergraph
 - See IWPT paper by Huang and Chiang (2005)
Things to keep in mind

Bound on the number of edges (SCFG):

\[|E| \in O(n^3|G|^3) \]

Bound on the number of nodes:

\[|V| \in O(n^2|G|) \]
Next time

What about the LM?