11-731 Machine Translation

Syntax-Based Translation Models – Principles, Approaches, Acquisition

Alon Lavie
March 2014

With Acknowledged Contributions from:
• Marcello Federico, Gabriele Musillo and Philipp Koehn (MT Marathon 2011)
• Adam Lopez, Matt Post and CCB (JHU)
Outline

- Syntax-based Translation Models: Rationale and Motivation
- Synchronous Context-Free Grammars (S-CFGs)
- Resource Scenarios and Model Definitions
 - String-to-Tree, Tree-to-String and Tree-to-Tree
- Inversion Transduction Grammars (ITGs)
- Hierarchical Phrase-based Models (Chiang’s Hiero)
- Syntax-Augmented Hierarchical Models (Venugopal and Zollmann)
- String-to-Tree Models
 - Phrase-Structure-based Model (Galley et al., 2004, 2006)
- Tree-to-Tree Models
 - Phrase-Structure-based Model (Hanneman, Burroughs and Lavie, 2011)
 - Tree Transduction Models (Yamada and Knight, Gildea et al.)
Syntax-based Models: Rationale

- Phrase-based models model translation at very shallow levels:
 - Translation equivalence modeled at the multi-word lexical level
 - Phrases capture some cross-language local reordering, but only for phrases that were seen in training – No effective generalization
 - Non-local cross-language reordering is modeled only by permuting order of phrases during decoding
 - No explicit modeling of syntax or structural divergences between the two languages

- **Goal:** Improve translation quality using syntax-based models
 - Capture generalizations, reorderings and language divergences at appropriate levels of abstraction
 - Models direct the search during decoding to more accurate translations
 - Still **Statistical MT:** Acquire translation models automatically from (annotated) parallel-data and model them statistically!
Syntax-based Statistical MT

- Building a syntax-based Statistical MT system:
 - Similar in concept to simpler phrase-based SMT methods:
 - **Model Acquisition** from bilingual sentence-parallel corpora
 - **Decoders** that given an input string can find the best translation according to the models

- Our focus this week will be on the different types of models and their acquisition

- **Next week (after Spring Break):** Chris Dyer will cover decoding for hierarchical and syntax-based MT
Syntax-based Resources vs. Models

- **Important Distinction:**
 1. What **structural information** for the parallel-data is available during model acquisition and training?
 2. What **type of translation models** are we acquiring from the annotated parallel data?

- **Structure available during Acquisition – Main Distinctions:**
 - Syntactic/structural information for the parallel training data:
 - Given by external components (parsers) or inferred from the data?
 - Syntax/Structure available for one language or for both?
 - Phrase-Structure, Dependency-Structure, other annotations?
 - What do we extract from parallel-sentences?
 - Sub-sentential units of **translation equivalence** annotated with structure
 - **Rules/structures** that determine how these units combine into full transductions
Structure Available During Acquisition

- What information/annotations are available for the bilingual sentence-parallel training data?
 - (Symetrized) Viterbi Word Alignments (i.e. from GIZA++)
 - (Non-syntactic) extracted phrases for each parallel sentence
 - Parse-trees/dependencies for “source” language
 - Parse-trees/dependencies for “target” language

- Some major potential issues and problems:
 - GIZA++ word alignments are not aware of syntax – word-alignment errors can have bad consequences on the extracted syntactic models
 - Using external monolingual parsers is also problematic:
 - Using single-best parse for each sentence introduces parsing errors
 - Parsers were designed for monolingual parsing, not translation
 - Parser design decisions for each language may be very different:
 - Different notions of constituency and structure
 - Different sets of POS and constituent labels
Synchronous Context-Free Grammars (S-CFGs)

TG (Lewis and Stearns, 1968; Aho and Ullman, 1969):
- two or more strings derived simultaneously
- more powerful than FSTs
- used in NLP to model alignments, unbounded reordering, and mappings from surface forms to logical forms

Synchronous Rules:
- left-hand side nonterminal symbol associated with source and target right-hand sides
- bijection mapping nonterminals in source and target of right-hand sides

\[
\begin{align*}
E & \rightarrow E_1 + E_3 / + E_1 E_3 \\
E & \rightarrow E_1 \ast E_2 / \ast E_1 E_2 \\
E & \rightarrow n / n
\end{align*}
\]

infix to Polish notation

\(n \in \mathbb{N} \)
Synchronous Context-Free Grammars (S-CFGs)

- **1-to-1 correspondence** between nodes
- **isomorphic** derivation trees
- uniquely determined **word alignment**

NP → DT[NPB] / DT[NPB]
NPB → JJ[NN] / JJ[NN]
NPB → NPB[JN] / JJ[NN]NPB

DT → the / ε
JJ → strong / 呼啸
JJ → north / 北
NN → wind / 风

(1) NP
 ↓
 DT NPB
 ↓ ↓
 the JJ NPB
 ↓ ↓
 strong JJ NN
 ↓ ↓
 north wind

(2) NP
 ↓
 DT NPB
 ↓ ↓
 the JJ NPB
 ↓ ↓
 strong JJ NN
 ↓ ↓
 north wind
 ε NPB
 ↓ ↓
 JJ NN
 ↓ ↓
 呼啸
 ↓
 howls

north wind
Syntax-based Translation Models

- **String-to-Tree:**
 - Models explain how to transduce a *string* in the source language into a *structural representation* in the target language.
 - During decoding:
 - No separate parsing on source side.
 - Decoding results in set of possible translations, each annotated with syntactic structure.
 - The best-scoring string+structure can be selected as the translation.

- **Example:**

 ne VB pas \rightarrow (VP (AUX (does)) (RB (not)) x2)
Syntax-based Translation Models

- **Tree-to-String:**
 - Models explain how to transduce a **structural representation** of the source language input into a **string** in the target language.
 - During decoding:
 - Parse the source string to derive its structure.
 - Decoding explores various ways of decomposing the parse tree into a sequence of composable models, each generating a translation string on the target side.
 - The best-scoring string can be selected as the translation.

- **Examples:**

<table>
<thead>
<tr>
<th>No.</th>
<th>Rule</th>
<th>(X_1 \ X_2 \ X_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td><code>(IP (NP) (VP) (PU))</code></td>
<td><code>X_1</code> <code>X_2</code> <code>X_3</code></td>
</tr>
<tr>
<td>(2)</td>
<td><code>(NP (NN 枪手))</code></td>
<td><code>1:1</code> <code>2:2</code> <code>3:3</code></td>
</tr>
<tr>
<td>(3)</td>
<td><code>(VP (SB 被) (VP (NP (NN))) (VV 去毙)))</code></td>
<td><code>1:1</code> <code>1:2</code></td>
</tr>
<tr>
<td>(4)</td>
<td><code>(NN 警方)</code></td>
<td><code>1:1</code> <code>2:4</code> <code>3:2</code></td>
</tr>
<tr>
<td>(5)</td>
<td><code>(PU。)</code></td>
<td><code>1:1</code> <code>1:1</code></td>
</tr>
</tbody>
</table>
Syntax-based Translation Models

- **Tree-to-Tree:**
 - Models explain how to transduce a **structural representation** of the source language input into a **structural representation** in the target language.
 - During decoding:
 - Decoder **synchronously** explores alternative ways of parsing the source-language input string and **transduce** it into corresponding target-language structural output.
 - The best-scoring structure+string can be selected as the translation.

- **Example:**

```plaintext
NP::NP [VP 北 CD 有 邦交 ] \rightarrow [one of the CD countries that VP]
( ;; Alignments
(X1::Y7)
(X3::Y4)
)```


Inversion Transduction Grammars (ITGs)

**BTG (Wu, 1997):**
- special form of SCFG
- only one nonterminal \( X \)
- nonterminal rules:

\[
\begin{align*}
X & \rightarrow X_{[1]} X_{[2]} / X_{[1]} X_{[2]} \quad \text{monotone rule} \\
X & \rightarrow X_{[1]} X_{[2]} / X_{[2]} X_{[1]} \quad \text{inversion rule}
\end{align*}
\]

- preterminal rules where \( e \in V_t \cup \{\epsilon\} \) and \( f \in V_s \cup \{\epsilon\} \):

\[
\begin{align*}
X & \rightarrow f / e \quad \text{lexical translation rules}
\end{align*}
\]
Inversion Transduction Grammars (ITGs)

\[ \langle X, X \rangle \Rightarrow x_1x_2/x_2x_1 \]
\[ \Rightarrow x_1x_2/x_2x_1 \]
\[ \Rightarrow 1/1 \]
\[ \Rightarrow 2/2 \]
\[ \Rightarrow 3/3 \]

\[ \langle X_1X_2, X_2X_1 \rangle \]
\[ \Rightarrow x_1x_2/x_2x_1 \]
\[ \Rightarrow x_3x_4x_2, x_2x_4x_3 \]
\[ \Rightarrow 1/x_4x_2, x_2x_4x_1 \]
\[ \Rightarrow 12x_2, x_2x_21 \]
\[ \Rightarrow \langle 123, 321 \rangle \]

re-indexed symbols
Hierarchical Phrase-Based Models

- Proposed by David Chiang in 2005
- Natural hierarchical extension to phrase-based models
- **Representation:** rules in the form of synchronous CFGs
  - Formally syntactic, but with no direct association to linguistic syntax
  - Single non-terminal “X”
- **Acquisition Scenario:** Similar to standard phrase-based models
  - No independent syntactic parsing on either side of parallel data
  - Uses “symmetricized” bi-directional viterbi word alignments
  - Extracts phrases and rules (hierarchical phrases) from each parallel sentence
  - Models the extracted phrases statistically using MLE scores
Hierarchical Phrase-Based Models

Typical Phrase-Based Chinese-English Translation:

[Aozhou] [shi]_1 [yu Beihan]_2 [you] [bangjiao] [de shaoshu guojia zhiyi] .
[Australia] [has] [dipl. rels.] [with North Korea]_2 [is]_1 [one of the few countries] .

- Chinese VPs follow PPs / English VPs precede PPs

  yu $X_1$ you $X_2$ / have $X_2$ with $X_1$

- Chinese NPs follow RCs / English NPs precede RCs

  $X_1$ de $X_2$ / the $X_2$ that $X_1$

- translation of zhiyi construct in English word order

  $X_1$ zhiyi / one of $X_1$
Hierarchical Phrase-Based Models

Example:
- Chinese-to-English Rules:
  \[ \langle s_{\text{en}}, s_{\text{zh}} \rangle \Rightarrow \langle s_{\text{en}} x_{\text{zh}}, s_{\text{zh}} x_{\text{en}} \rangle \]
  \[ \Rightarrow \langle s_{\text{en}} x_{\text{zh}} x_{\text{zh}}, s_{\text{zh}} x_{\text{en}} x_{\text{zh}} \rangle \]
  \[ \Rightarrow \langle x_{\text{en}} x_{\text{zh}} x_{\text{zh}}, x_{\text{zh}} x_{\text{en}} x_{\text{zh}} \rangle \]
  \[ \Rightarrow \langle \text{Aozhou x}_{\text{zh}}, \text{Australia x}_{\text{zh}} x_{\text{zh}} \rangle \]
  \[ \Rightarrow \langle \text{Aozhou shi x}_{\text{zh}}, \text{Australia is x}_{\text{zh}} \rangle \]
  \[ \Rightarrow \langle \text{Aozhou shi x}_{\text{zh}} zhiyi, \text{Australia is one of x}_{\text{zh}} \rangle \]
  \[ \Rightarrow \langle \text{Aozhou shi x}_{\text{zh}} zhiyi, \text{Australia is one of the x}_{\text{zh}} \text{ that x}_{\text{zh}} \rangle \]
  \[ \Rightarrow \langle \text{Aozhou shi yu x}_{\text{zh}} \text{ you x}_{\text{zh}} \text{ de x}_{\text{zh}} zhiyi, \text{Australia is one of the x}_{\text{zh}} \text{ that have x}_{\text{zh}} \text{ with x}_{\text{zh}} \rangle \]

Figure 1: Example partial derivation of a synchronous CFG.
Hierarchical Phrase-Based Models

- Extraction Process Overview:
  1. Start with standard phrase extraction from symmetricized viterbi word-aligned sentence-pair
  2. For each phrase-pair, find all embedded phrase-pairs, and create a hierarchical rule for each instance
  3. Accumulate collection of all such rules from the entire corpus along with their counts
  4. Model them statistically using maximum likelihood estimate (MLE) scores:
     - \( P(\text{target}|\text{source}) = \frac{\text{count}(\text{source}, \text{target})}{\text{count}(\text{source})} \)
     - \( P(\text{source}|\text{target}) = \frac{\text{count}(\text{source}, \text{target})}{\text{count}(\text{target})} \)
  5. Filtering:
     - Rules of length < 5 (terminals and non-terminals)
     - At most two non-terminals \( X \)
     - Non-terminals must be separated by a terminal
Hierarchical Phrase-Based Models

Rule Extraction:

- a **word-aligned** sentence pair
- b extract **initial phrase pairs**
- c replace sub-phrases in phrases with symbol $X$

Glue Rules:

$$S \rightarrow S_1X_2 / S_1X_2 \quad S \rightarrow X_1/X_1$$

Rule Filtering:

- limited length of initial phrases
- no adjacent nonterminals on source
- at least one pair of aligned words in non-glue rules
Hierarchical Phrase-Based Models

Australia is one of the few countries that have diplomatic relations with North Korea.
Hierarchical Phrase-Based Models

Australia is one of the few countries that have diplomatic relations with North Korea.

X → 与北韩有邦交, have diplomatic relations with North Korea.
Hierarchical Phrase-Based Models

Australia is one of the few countries that have diplomatic relations with North Korea.

X → 与北韩有邦交, have diplomatic relations with North Korea.

X → 邦交, diplomatic relations.

X → 北韩, North Korea.
Hierarchical Phrase-Based Models

Australia is one of the few countries that have diplomatic relations with North Korea.

$X \rightarrow \text{with North Korea}$

$X \rightarrow \text{have diplomatic relations with North Korea}$

$X \rightarrow \text{with } X_1 \text{ have } X_2$,
Hierarchical Phrase-Based Models

Word Translation Features:

\[ h_1(X \rightarrow \alpha/\beta) = \log p(T_\beta | T_\alpha) \]

\[ h_2(X \rightarrow \alpha/\beta) = \log p(T_\alpha | T_\beta) \]

Word Penalty Feature:

\[ h_3(X \rightarrow \alpha/\beta) = -|T_\beta| \]

Synchronous Features:

\[ h_4(X \rightarrow \alpha/\beta) = \log p(\beta | \alpha) \]

\[ h_5(X \rightarrow \alpha/\beta) = \log p(\alpha | \beta) \]

Glue Penalty Feature:

\[ h_6(S \rightarrow S_1X_1/S_1X_1) = -1 \]

Phrase Penalty Feature:

\[ h_7(X \rightarrow \alpha/\beta) = -1 \]

- \( \lambda_i \) tuned on dev set using MERT
Syntax-Augmented Hierarchical Model

- Proposed by CMU’s Venugopal and Zollmann in 2006
- **Representation**: rules in the form of synchronous CFGs
- **Main Goal**: add linguistic syntax to the hierarchical rules that are extracted by the Hiero method:
  - Hiero’s “X” labels are completely generic – allow substituting any sub-phrase into an X-hole (if context matches)
  - Linguistic structure has **labeled** constituents – the labels determine what sub-structures are allowed to combine together
  - Idea: use labels that are derived from **parse structures** on one side of parallel data to label the “X” labels in the extracted rules
  - Labels from one language (i.e. English) are “projected” to the other language (i.e. Chinese)
- **Major Issues/Problems**:
  - How to label X-holes that are not complete constituents?
  - What to do about rule “fragmentation” – rules that are the same other than the labels inside them?
Syntax-Augmented Hierarchical Model

- Extraction Process Overview:
  1. Parse the “strong” side of the parallel data (i.e. English)
  2. Run the Hiero extraction process on the parallel-sentence instance and find all phrase-pairs and all hierarchical rules for parallel-sentence
  3. Labeling: for each X-hole that corresponds to a parse constituent C, label X as C. For all other X-holes, assign combination labels
  4. Accumulate collection of all such rules from the entire corpus along with their counts
  5. Model the rules statistically: Venagopal & Zollman use six different rule score features instead of just two MLE scores.
  6. Filtering: similar to Hiero rule filtering

- Advanced Modeling: Preference Grammars
  - Avoid rule fragmentation: instead of explicitly labeling the X-holes in the rules with different labels, keep them as “X”, with distributions over the possible labels that could fill the “X”. These are used as features during decoding
Syntax-Augmented Hierarchical Model

Example:

\[ S \rightarrow \text{he does } RB + VB_{x1}, \text{ il } x1 \]
Linguistic Syntax-based Models
Syntax-based Models

- Syntax and Isomorphism Constraints:
  - Parallel parse-trees are viewed as a compositional combination of syntactic sub-units that are translation equivalents
  - All corresponding source-target units should be translation equivalents: fully supported by the word alignments
  - All lexical phrase-pairs must be valid syntactic constituents in their corresponding trees
  - All non-terminals in extracted rules are decomposition points of smaller syntactic units that are constituents

- All the restrictions we saw in Hierarchical S-CFGs, with additional constraints of syntax from the parse tree(s)
- Fewer phrase-pairs can be extracted
- Much richer grammars
Syntax-based Models

Impossible Rules

English span not a constituent
no rule extracted
Syntax-based Models

Rules with Context

Rule with this phrase pair requires syntactic context
Syntax-based Models

- Extracting all possible syntax-labeled sub-trees and decomposed partial-trees generates an exponential number of phrases and rules
- Typically much too large for effective decoding
- Different approaches to limiting the number of rules:
  - Apply the Hiero-style restrictions on rules: maximum span, at most two non-terminals, at least one lexical anchor, etc.
  - Extract only minimal rules (maximally decompose each training instance): [GHKM 2004] [GHKM 2006]
  - Extract all rules and apply harsh rule-filtering methods: Stat-XFER [Lavie et al, 2009] [Hanneman et al 2011]
String-to-Tree: Galley et al. (GHKM)

- Proposed by Galley et al. in 2004 and improved in 2006
- Idea: model **full syntactic structure** on the **target-side** only in order to produce translations that are more grammatical
- **Representation**: synchronous hierarchical strings on the source side and their corresponding tree fragments on the target side
- **Example:**

  ne VB pas $\rightarrow$ (VP (AUX (does) RB (not)) x2
String-to-Tree: Galley et al. (GHKM)

- Overview of Extraction Process:
  1. Obtain symetricized viterbi word-alignments for parallel sentences
  2. Parse the “strong” side of the parallel data (i.e. English)
  3. Find all constituent nodes in the source-language tree that have consistent word alignments to strings in target-language
  4. Treat these as “decomposition” points: extract tree-fragments on target-side along with corresponding “gapped” string on source-side
  5. Labeling: for each “gap” that corresponds to a parse constituent C, label the gap as C.
  6. Accumulate collection of all such rules from the entire corpus along with their counts
  7. Model the rules statistically: initially used “standard” P(tgt|src) MLE scores. Also experimented with other scores, similar to SAMT

- Advanced Modeling: Extraction of composed rules, not just minimal rules
GHKM Rule Extraction

Minimal Rules

Extract: set of smallest rules required to explain the sentence pair

Ich werde Ihnen die entsprechenden Anmerkungen aushändigen

I shall be passing on to you some comments
Lexical Rule

Extracted rule: PRP → Ich | I
GHKM Rule Extraction

Lexical Rule

Extracted rule: \( \text{PRP} \rightarrow \text{Ihnen} \mid \text{you} \)
GHKM Rule Extraction

Lexical Rule

Extracted rule: DT → die | some
GHKM Rule Extraction

Lexical Rule

Extracted rule: NNS → Anmerkungen | comments
GHKM Rule Extraction

Insertion Rule

Extracted rule: \( PP \rightarrow X \mid to \ PRP \)
**GHKM Rule Extraction**

**Non-Lexical Rule**

Extracted rule: \( NP \rightarrow X_1 X_2 \mid DT_1 NNS_2 \)
GHKM Rule Extraction

Lexical Rule with Syntactic Context

Extracted rule: $\text{VP} \rightarrow X_1 \ X_2 \ \text{aushändigen} \mid \text{passing on PP}_1 \ \text{NP}_2$
Extracted rule: $VP \rightarrow \text{werde X} \mid \text{shall be VP}$ (ignoring internal structure)
GHKM Rule Extraction

Non-Lexical Rule

Extracted rule: $S \rightarrow X_1 X_2 \mid PRP_1 VP_2$

DONE — note: one rule per alignable constituent
GHKM Rule Extraction

Unaligned Source Words

Attach to neighboring words or higher nodes → additional rules
GHKM Rule Extraction

Composed Rules

- Current rules
  \[ X_1 X_2 = NP \]
  \[ DT_1 NNS_1 \]

  \[
  \text{die} = DT \\
  \text{some}
  
  \text{entsprechenden Anmerkungen} = NNS \\
  \text{comments}
  
- Composed rule
  \[
  \text{die entsprechenden Anmerkungen} = NP \\
  DT NNS \\
  \text{some comments}
  
(1 non-leaf node: \text{NP})
Tree-to-Tree Grammar Extraction

- Developed by [Lavie, Ambati and Parlikar, 2007] and improved in [Hanneman, Burroughs and Lavie, 2011]
- **Goal:** Extract linguistically-supported syntactic phrase-pairs and synchronous transfer rules automatically from parsed parallel corpora
- **Representation:** Synchronous CFG rules with constituent-labels, POS-tags or lexical items on RHS of rules. Syntax-labeled phrases are fully-lexicalized S-CFG rules.
- **Acquisition Scenario:**
  - Parallel corpus is word-aligned using GIZA++, symetricized.
  - Phrase-structure parses for source and/or target language for each parallel-sentence are obtained using monolingual parsers
Tree-to-Tree Grammar Extraction

- **Goals:**
  - Extract all possible rules (minimal and composed) supported by the translation equivalence constraints
  - Do not violate constituent boundaries
  - Allow adding compositional structure

- **Accomplished via:**
  - Multiple constituent node alignments
  - Virtual constituent nodes
  - Multiple right-hand side decompositions

- First syntax-based grammar extractor to do all three
Tree-to-Tree Grammar Extraction
Basic Node Alignment

Word alignment consistency constraint from phrase-based SMT
Basic Node Alignment

- Word alignment consistency constraint from phrase-based SMT
Virtual Nodes

- Consistently aligned consecutive children of the same parent

Diagram showing aligned tree structures with consistent alignment between the English and French phrases.
Virtual Nodes

- Consistently aligned consecutive children of the same parent
- New intermediate node inserted in tree
Virtual Nodes

- Consistently aligned consecutive children of the same parent
- New intermediate node inserted in tree
- Virtual nodes may overlap
- Virtual nodes may align to any type of node
Syntax Constraints

- Consistent word alignments ≠ node alignment
- Virtual nodes may not cross constituent boundaries
Multiple Alignment

- Nodes with multiple consistent alignments
- Keep all of them
**Basic Grammar Extraction**

- Aligned node pair is LHS; aligned subnodes are RHS

NP::NP → [les N¹ A²]::[JJ² NNS¹]
N::NNS → [voitures]::[cars]
A::JJ → [bleues]::[blue]
Multiple Decompositions

- All possible right-hand sides are extracted

NP::NP → [les N¹ A²]::[JJ² NNS¹]
NP::NP → [les N¹ bleues]::[blue NNS¹]
NP::NP → [les voitures A²]::[JJ² cars]
NP::NP → [les voitures bleues]::[blue cars]
N::NNS → [voitures]::[cars]
A::JJ → [bleues]::[blue]
Multiple Decompositions

NP::NP → [les N+AP^1]:[NP^1]
NP::NP → [D+N^1 AP^2]:[JJ^2 NNS^1]
NP::NP → [D+N^1 A^2]:[JJ^2 NNS^1]
NP::NP → [les N^1 AP^2]:[JJ^2 NNS^1]
NP::NP → [les N^1 A^2]:[JJ^2 NNS^1]
NP::NP → [D+N^1 bleues]:[blue NNS^1]
NP::NP → [les N^1 bleues]:[blue NNS^1]
NP::NP → [les voitures AP^2]:[JJ^2 cars]
NP::NP → [les voitures A^2]:[JJ^2 cars]
NP::NP → [les voitures bleues]:[blue cars]
D+N::NNS → [les N^1]:[NNS^1]
D+N::NNS → [les voitures]:[cars]
N+AP::NP → [N^1 AP^2]:[JJ^2 NNS^1]
N+AP::NP → [N^1 A^2]:[JJ^2 NNS^1]
N+AP::NP → [N^1 bleues]:[blue NNS^1]
N+AP::NP → [voitures AP^2]:[JJ^2 cars]
N+AP::NP → [voitures A^2]:[JJ^2 cars]
N+AP::NP → [voitures bleues]:[blue cars]
N::NNS → [voitures]:[cars]
AP::JJ → [A^1]:[JJ^1]
AP::JJ → [bleues]:[blue]
A::JJ → [bleues]:[blue]
## Comparison to Related Work

<table>
<thead>
<tr>
<th></th>
<th>Tree Constr.</th>
<th>Multiple Aligns</th>
<th>Virtual Nodes</th>
<th>Multiple Decomp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiero</td>
<td>No</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Stat-XFER</td>
<td>Yes</td>
<td>No</td>
<td>Some</td>
<td>No</td>
</tr>
<tr>
<td>GHKM</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SAMT</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chiang [2010]</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HBL [2011]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Experimental Setup

- **Train:** FBIS Chinese–English corpus
- **Tune:** NIST MT 2006
- **Test:** NIST MT 2003

![Diagram]

Parallel Corpus → Parse → Word Align → Extract Grammar → Filter Grammar → Build MT System
Extraction Configurations

• **Baseline:**
  - Stat-XFER exact tree-to-tree extractor
  - Single decomposition with minimal rules

• **Multi:**
  - Add multiple alignments and decompositions

• **Virt short:**
  - Add virtual nodes; max rule length 5

• **Virt long:**
  - Max rule length 7
## Number of Rules Extracted

<table>
<thead>
<tr>
<th></th>
<th>Tokens</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phrase</td>
<td>Hierarc.</td>
</tr>
<tr>
<td><strong>Baseline</strong></td>
<td>6,646,791</td>
<td>1,876,384</td>
</tr>
<tr>
<td><strong>Multi</strong></td>
<td>8,709,589</td>
<td>6,657,590</td>
</tr>
<tr>
<td><strong>Virt short</strong></td>
<td>10,190,487</td>
<td>14,190,066</td>
</tr>
<tr>
<td><strong>Virt long</strong></td>
<td>10,288,731</td>
<td>22,479,863</td>
</tr>
</tbody>
</table>
### Number of Rules Extracted

<table>
<thead>
<tr>
<th></th>
<th>Tokens</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phrase</td>
<td>Hierarc.</td>
</tr>
<tr>
<td><strong>Baseline</strong></td>
<td>6,646,791</td>
<td>1,876,384</td>
</tr>
<tr>
<td><strong>Multi</strong></td>
<td>8,709,589</td>
<td>6,657,590</td>
</tr>
<tr>
<td><strong>Virt short</strong></td>
<td>10,190,487</td>
<td>14,190,066</td>
</tr>
<tr>
<td><strong>Virt long</strong></td>
<td>10,288,731</td>
<td>22,479,863</td>
</tr>
</tbody>
</table>

- **Multiple alignments and decompositions:**
  - Four times as many hierarchical rules
  - Small increase in number of phrase pairs
### Number of Rules Extracted

<table>
<thead>
<tr>
<th></th>
<th>Tokens</th>
<th></th>
<th>Types</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phrase</td>
<td>Hierarc.</td>
<td>Phrase</td>
<td>Hierarc.</td>
</tr>
<tr>
<td>Baseline</td>
<td>6,646,791</td>
<td>1,876,384</td>
<td>1,929,641</td>
<td>767,573</td>
</tr>
<tr>
<td>Multi</td>
<td>8,709,589</td>
<td>6,657,590</td>
<td>2,016,227</td>
<td>3,590,184</td>
</tr>
<tr>
<td>Virt short</td>
<td>10,190,487</td>
<td>14,190,066</td>
<td>2,877,650</td>
<td>8,313,690</td>
</tr>
<tr>
<td>Virt long</td>
<td>10,288,731</td>
<td>22,479,863</td>
<td>2,970,403</td>
<td>15,750,695</td>
</tr>
</tbody>
</table>

- **Multiple decompositions and virtual nodes:**
  - 20 times as many hierarchical rules
  - Stronger effect on phrase pairs
  - 46% of rule types use virtual nodes
<table>
<thead>
<tr>
<th></th>
<th>Tokens</th>
<th>Types</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phrase</td>
<td>Hierarc.</td>
<td>Phrase</td>
<td>Hierarc.</td>
</tr>
<tr>
<td>Baseline</td>
<td>6,646,791</td>
<td>1,876,384</td>
<td>1,929,641</td>
<td>767,573</td>
</tr>
<tr>
<td>Multi</td>
<td>8,709,589</td>
<td>6,657,590</td>
<td>2,016,227</td>
<td>3,590,184</td>
</tr>
<tr>
<td>Virt short</td>
<td>10,190,487</td>
<td>14,190,066</td>
<td>2,877,650</td>
<td>8,313,690</td>
</tr>
<tr>
<td>Virt long</td>
<td>10,288,731</td>
<td>22,479,863</td>
<td>2,970,403</td>
<td>15,750,695</td>
</tr>
</tbody>
</table>

- Proportion of singletons mostly unchanged
- Average hierarchical rule count drops
## Results: Metric Scores

- **NIST MT 2003 test set**

<table>
<thead>
<tr>
<th>System</th>
<th>Filter</th>
<th>BLEU</th>
<th>METR</th>
<th>TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>10k</td>
<td>24.39</td>
<td>54.35</td>
<td>68.01</td>
</tr>
<tr>
<td>Multi</td>
<td>10k</td>
<td>24.28</td>
<td>53.58</td>
<td>65.30</td>
</tr>
<tr>
<td>Virt short</td>
<td>10k</td>
<td>25.16</td>
<td>54.33</td>
<td>66.25</td>
</tr>
<tr>
<td>Virt long</td>
<td>10k</td>
<td><strong>25.74</strong></td>
<td><strong>54.55</strong></td>
<td><strong>65.52</strong></td>
</tr>
</tbody>
</table>

- Strict grammar filtering: extra phrase pairs help improve scores
Tree Transduction Models

- Originally proposed by Yamada and Knight, 2001. Influenced later work by Gildea et al. on Tree-to-String models
- Conceptually simpler than most other models:
  - Learn finite-state transductions on source-language parse-trees in order to map them into well-ordered and well-formed target sentences, based on the viterbi word alignments
- **Representation**: simple local transformations on tree structure, given contextual structure in the tree:
  - Transduce leaf words in the tree from source to target language
  - Delete a leaf-word or a sub-tree in a given context
  - Insert a leaf-word or a sub-tree in a given context
  - Transpose (invert order) of two sub-trees in a given context
  - [Advanced model by Gildea: duplicate and insert a sub-tree]
Tree Transduction Models

- Main Issues/Problems:
  - Some complex reorderings and correspondences cannot be modeled using these simple tree transductions
  - Highly sensitive to errors in the source-language parse-tree and to word-alignment errors
Summary

- Variety of structure and syntax based models: string-to-tree, tree-to-string, tree-to-tree
- Different models utilize different structural annotations on training resources and depend on different independent components (parsers, word alignments)
- Different model acquisition processes from parallel data, but several recurring themes:
  - Finding sub-sentential translation equivalents and relating them via hierarchical and/or syntax-based structure
  - Statistical modeling of the massive collections of rules acquired from the parallel data
Major Challenges

- **Sparse Coverage:** the acquired syntax-based models are often much sparser in coverage than non-syntactic phrases
  - Because they apply additional hard constraints beyond word-alignment as evidence of translation equivalence
  - Because the models fragment the data – they are often observed far fewer times in training data → more difficult to model them statistically
  - Consequently, “pure” syntactic models often lag behind phrase-based models in translation performance – observed and learned again and again by different groups (including our own)
  - This motivates approaches that integrate syntax-based models with phrase-based models

- **Overcoming Pipeline Errors:**
  - Adding independent components (parser output, viterbi word alignments) introduces cumulative errors that are hard to overcome
  - Various approaches try to get around these problems
  - Also recent work on “syntax-aware” word-alignment, “bi-lingual-aware” parsing
Major Challenges

- **Optimizing for Structure Granularity and Labels:**
  - Syntactic structure in MT heavily based on Penn TreeBank structures and labels (POS and constituents) – are these needed and optimal for MT, even for MT into English?
  - Approaches range from single abstract hierarchical “X” label, to fully lexicalized constituent labels. What is optimal? How do we answer this question?
  - Alternative Approaches (i.e. ITGs) aim to overcome this problem by unsupervised inference of the structure from the data

- **Direct Contrast and Comparison of alternative approaches is extremely difficult:**
  - Decoding with these syntactic models is highly complex and computationally intensive
  - Different groups/approaches develop their own decoders
  - Hard to compare anything beyond BLEU (or other metric) scores

- Different groups continue to pursue different approaches – this is at the forefront of current research in Statistical MT
References