Phrase-Based MT

February 5, 2013

Translational Equivalence

Ma hat die Prüfung **bestanden**, jedoch nur knapp Ma **insisted on** the test, but just barely.

Ma **passed** the test, but just barely.

How do lexical translation models deal with contextual information?

Translational Equivalence

Ma hat die Prüfung **bestanden**, jedoch nur knapp

Ma **insisted on** the test, but just barely.

Ma **passed** the test, but just barely.

F	E	
bestanden	insisted	-1.18
	were	-1.18
	existed	-1.36
	was	-1.39
	been	-1.43
	passed	-1.52
	consist	-1.87

Translational Equivalence

Ma hat die Prüfung **bestanden**, jedoch nur knapp Ma **insisted on** the test, but just barely.

Ma **passed** the test, but just barely.

Lexical Translation

What is wrong with this? How can we improve this?

With a latent variable, we introduce a decomposition into phrases which translate independently:

$$p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = p(\mathbf{a}) \prod_{\langle \overline{\mathbf{e}}, \overline{\mathbf{f}} \rangle \in \mathbf{a}} p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}})$$

- ${f f}={f Morgen}$ fliege ich nach Baltimore zur Konferenz
- $\mathbf{e} = \mathtt{Tomorrow} \ \mathtt{I} \ \mathtt{will} \ \mathtt{fly} \ \mathtt{to} \ \mathtt{the} \ \mathtt{Konferenz} \ \mathtt{in} \ \mathtt{Baltimore}$

- What are the atomic units
 - Lexical translation: words
 - Phrase-based translation: **phrases**
- Benefits
 - many-to-many translation
 - use of local context in translation
- Downsides
 - Where do phrases comes from?
- Standard model used by Google, Microsoft ...

With a latent variable, we introduce a decomposition into phrases which translate independently:

$$p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = p(\mathbf{a}) \prod_{\langle \overline{\mathbf{e}}, \overline{\mathbf{f}} \rangle \in \mathbf{a}} p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}})$$

With a latent variable, we introduce a decomposition into phrases which translate independently:

$$p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = p(\mathbf{a}) \prod_{\langle \overline{\mathbf{e}}, \overline{\mathbf{f}} \rangle \in \mathbf{a}} p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}})$$

p(Morgen|Tomorrow)

With a latent variable, we introduce a decomposition into phrases which translate independently:

$$p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = p(\mathbf{a}) \prod_{\langle \overline{\mathbf{e}}, \overline{\mathbf{f}} \rangle \in \mathbf{a}} p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}})$$

p(Morgen|Tomorrow) x p(fliege|will fly)

With a latent variable, we introduce a decomposition into phrases which translate independently:

$$p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = p(\mathbf{a}) \prod_{\langle \overline{\mathbf{e}}, \overline{\mathbf{f}} \rangle \in \mathbf{a}} p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}})$$

p(Morgen|Tomorrow) x p(fliege|will fly) x p(ich|I)

With a latent variable, we introduce a decomposition into phrases which translate independently:

$$p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = p(\mathbf{a}) \prod_{\langle \overline{\mathbf{e}}, \overline{\mathbf{f}} \rangle \in \mathbf{a}} p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}})$$

 $p(Morgen|Tomorrow) \times p(fliege|will fly) \times p(ich|I) \times ...$

With a latent variable, we introduce a decomposition into phrases which translate independently:

$$p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = p(\mathbf{a}) \prod_{\langle \overline{\mathbf{e}}, \overline{\mathbf{f}} \rangle \in \mathbf{a}} p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}})$$

 $\begin{array}{l} \text{Marginalize to get p(f|e):} \\ p(\mathbf{f} \mid \mathbf{e}) = \sum_{\mathbf{a} \in \mathcal{A}} p(\mathbf{a}) \prod_{\langle \overline{\mathbf{e}}, \overline{\mathbf{f}} \rangle \in \mathbf{a}} p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}}) \end{array}$

Phrases

- Contiguous strings of words
- Phrases are not necessarily syntactic constituents
- Usually have maximum limits
- Phrases subsume words (words are phrases)

Linguistic Phrases

- Model is not limited to linguistic phrases (NPs,VPs, PPs, CPs...)
- Non-constituent phrases are useful

es gibt there is | there are

 Is a "good" phrase more likely to be [P NP] or [governor P] Why? How would you figure this out?

Phrase Tables

$\overline{\mathbf{f}}$	$\overline{\mathbf{e}}$	$p(\mathbf{\bar{f}} \mid \mathbf{\overline{e}})$
das Thema	the issue	0.41
	the point	0.72
	the subject	0.47
	the thema	0.99
es gibt	there is	0.96
	there are	0.72
morgen	tomorrow	0.9
fliege ich	will I fly	0.63
	will fly	0.17
	l will fly	0.13

p(a)

- Two responsibilities
 - Divide the source sentence into phrases
 - Standard approach: uniform distribution over all possible segmentations
 - How many segmentations are there?
 - Reorder the phrases
 - Standard approach: Markov model on phrases (parameterized with log-linear model)

Reordering Model

phrase	translates	movement	distance
1	1–3	start at beginning	0
2	6	skip over 4-5	+2
3	4–5	move back over 4–6	-3
4	7	skip over 6	+1

Scoring function: $d(x) = \alpha^{|x|}$ — exponential with distance

Learning Phrases

- Latent segmentation variable
- Latent phrasal inventory
- Parallel data
 - EM?

Computational problem: summing over all segmentations and alignments is #P-complete

Modeling problem: MLE has a degenerate solution.

Learning Phrases

- Three stages
 - word alignment
 - extraction of phrases
 - estimation of phrase probabilities

Consistent Phrases

All words of the phrase pair have to align to each other.

Tuesday, February 19, 13

akemasu / open

watashi wa / I

watashi / I

hako wo / box

hako wo / the box

hako wo / open the box

hako wo akemasu / open the box

Estimating Probabilities

- What is the MLE?
 - Depends on the alignment model!
- Two options
 - EM over restricted space
 - Assume all alignments equally likely count and normalize phrase pairs

Adapted from Koehn (2006)

Adapted from Koehn (2006)

Adapted from Koehn (2006)

Decoding algorithm

- Translation as a search problem
- Partial hypothesis keeps track of
 - which source words have been translated (coverage vector)
 - *n*-1 most recent words of English (for LM!)
 - a back pointer list to the previous hypothesis + (e,f) phrase pair used
 - the (partial) translation probability
 - the estimated probability of translating the remaining words (precomputed, a function of the coverage vector)
- **Start state**: no translated words, E=<s>, bp=nil
- **Goal state**: all translated words

Decoding algorithm

- Q[0] ← Start state
- for i = 0 to |**f**|-1
 - Keep *b* best hypotheses at Q[i]
 - for each hypothesis h in Q[i]
 - for each untranslated span in h.c for which there is a translation <e,f> in the phrase table
 - h' = h extend by <e,f>
 - Is there an item in Q[|h'.c|] with = LM state?
 - yes: update the item bp list and probability
 - no:Q[|h'.**c**|] ← h'
- Find the best hypothesis in Q[|f|], reconstruction translation by following back pointers

$\overline{\mathbf{e}}$:	<s></s>
c :	
<i>p</i> :	1.0

Reordering

- Language express words in different orders
 - bruja verde vs. green witch
- Phrase pairs can "memorize" some of these
- More general: in decoding, "skip ahead"
- Problem:
 - Won't "easy parts" of the sentence be translated first?
- Solution:
 - Future cost estimate
 - For every **coverage vector**, estimate what it will cost to translate the remaining untranslated words
 - When pruning, use p * future cost!

Future costs make these hypotheses comparable.

Decoding summary

- Finding the best hypothesis is NP-hard
 - Even with no language model, there are an exponential number of states!
 - Solution I: limit reordering
 - Solution 2: (lossy) pruning