Phrase-Based MT: Decoding

February 7, 2013
Phrase Based MT

\[e^* = \arg \max_{e} p(e | f) \]
\[= \arg \max_{e} p(f | e) \times p(e) \]
\[\approx \arg \max_{e} p(f, a | e) \times p(e) \]

- Recipe
 - Segmentation / Alignment model
 - Phrase model
 - Language Model
Phrase Tables

<table>
<thead>
<tr>
<th>\bar{f}</th>
<th>\bar{e}</th>
<th>$p(\bar{f} \mid \bar{e})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>das Thema</td>
<td>the issue</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>the point</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>the subject</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>the thema</td>
<td>0.99</td>
</tr>
<tr>
<td>es gibt</td>
<td>there is</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>there are</td>
<td>0.72</td>
</tr>
<tr>
<td>morgen</td>
<td>tomorrow</td>
<td>0.9</td>
</tr>
<tr>
<td>fliege ich</td>
<td>will I fly</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>will fly</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>I will fly</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Reordering Model

Scoring function: \(d(x) = \alpha^{|x|} \) — exponential with distance
Translation Process

- Task: translate this sentence from German into English

er geht ja nicht nach hause
Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

• Pick phrase in input, translate
Translation Process

• Task: translate this sentence from German into English

 er geht ja nicht nach hause

 er ja nicht

 he does not

• Pick phrase in input, translate
 – it is allowed to pick words out of sequence reordering
 – phrases may have multiple words: many-to-many translation

Chapter 6: Decoding
Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

er geht ja nicht

he does not go

• Pick phrase in input, translate
Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

he does not go home

• Pick phrase in input, translate
Computing Translation Probability

- Probabilistic model for phrase-based translation:

\[
e_{\text{best}} = \arg\max_e \prod_{i=1}^{I} \phi(\bar{f}_i|\bar{e}_i) \ d(start_i - end_{i-1} - 1) \ p_{LM}(e)
\]

- Score is computed incrementally for each partial hypothesis

- Components

 Phrase translation Picking phrase \(\bar{f}_i \) to be translated as a phrase \(\bar{e}_i \)

 \(\rightarrow \) look up score \(\phi(\bar{f}_i|\bar{e}_i) \) from phrase translation table

 Reordering Previous phrase ended in \(end_{i-1} \), current phrase starts at \(start_i \)

 \(\rightarrow \) compute \(d(start_i - end_{i-1} - 1) \)

 Language model For \(n \)-gram model, need to keep track of last \(n - 1 \) words

 \(\rightarrow \) compute score \(p_{LM}(w_i|w_{i-(n-1)}, ..., w_{i-1}) \) for added words \(w_i \)
Many translation options to choose from

- in Europarl phrase table: 2727 matching phrase pairs for this sentence
- by pruning to the top 20 per phrase, 202 translation options remain
The machine translation decoder does not know the right answer
- picking the right translation options
- arranging them in the right order

→ Search problem solved by heuristic beam search
Decoding: Precompute Translation Options

<table>
<thead>
<tr>
<th>er</th>
<th>geht</th>
<th>ja</th>
<th>nicht</th>
<th>nach</th>
<th>hause</th>
</tr>
</thead>
</table>

consult phrase translation table for all input phrases
Decoding: Start with Initial Hypothesis

initial hypothesis: no input words covered, no output produced
Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis
Decoding: Hypothesis Expansion

- he
- are
- it

create hypotheses for all other translation options
Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis
Decoding: Find Best Path

backtrack from highest scoring complete hypothesis
Complexity

- This is an NP-complete problem
- Reduction to TSP (sketch)
 - Each source word is a city
 - A bigram LM encodes the distance between pairs of cities
- Knight (1999) has careful proof
- How do we solve such problems?
 - Dynamic programming [risk free]
 - The state is the current city C & the set of previous visited cities
 - Doesn’t matter the order the previous list was visited in as long as we keep the best path to C through
 - How many states are there?
- Approximate search [risky]
Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same number of foreign words translated
 - same English words in the output
 - different scores

- Worse hypothesis is dropped
Recombination

- Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
 - same number of foreign words translated
 - same last two English words in output (assuming trigram language model)
 - same last foreign word translated
 - different scores

- Worse hypothesis is dropped
Restrictions on Recombination

- **Translation model:** Phrase translation independent from each other
 → no restriction to hypothesis recombination

- **Language model:** Last \(n - 1 \) words used as history in \(n \)-gram language model
 → recombined hypotheses must match in their last \(n - 1 \) words

- **Reordering model:** Distance-based reordering model based on distance to end position of previous input phrase
 → recombined hypotheses must have that same end position
Pruning

- Recombination reduces search space, but not enough
 (we still have a NP complete problem on our hands)

- Pruning: remove bad hypotheses early
 - put comparable hypothesis into stacks
 (hypotheses that have translated same number of input words)
 - limit number of hypotheses in each stack
• Hypothesis expansion in a stack decoder
 – translation option is applied to hypothesis
 – new hypothesis is dropped into a stack further down
Stack Decoding Algorithm

1: place empty hypothesis into stack 0
2: for all stacks 0...n – 1 do
3: for all hypotheses in stack do
4: for all translation options do
5: if applicable then
6: create new hypothesis
7: place in stack
8: recombine with existing hypothesis if possible
9: prune stack if too big
10: end if
11: end for
12: end for
13: end for
Maria no dio una bofetada a la bruja verde
f: Maria no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...

Mary

\[\begin{array}{l}
\text{e: } \langle s \rangle \text{ Mary} \\
\text{c: } \ast \mbox{-------} \\
p: 0.9 \\
\end{array} \]
f: Maria no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...

玛丽

玛丽
f: Maria no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...

Mary

Maria

Mary did not

did not

c: **--------
p: 0.3
f: Maria no dio una bofetada a la bruja verde

- **Q[0]:**
 - **e:** <s> Mary
 - **c:** *-------
 - **p:** 1.0

- **Q[1]:**
 - **e:** <s> Maria
 - **c:** *-------
 - **p:** 0.3

- **Q[2]:**
 - **e:** did not
 - **c:** **-------
 - **p:** 0.3

Maria did not **Mary**
Maria no dio una bofetada a la bruja verde

\[f: \text{Maria no dio una bofetada a la bruja verde} \]

Diagram:

- **e:** \(<s>\) Mary
 - **c:** *---------
 - **p:** 0.9

- **e:** \(<s>\) Maria
 - **c:** *---------
 - **p:** 0.3

- **e:** did not
 - **c:** ***-------**
 - **p:** 0.45

Tree:

- Mary
 - **e:** \(<s>\)
 - **c:** *---------
 - **p:** 1.0

- Maria
 - **e:** \(<s>\)
 - **c:** *---------
 - **p:** 0.9

- **e:** did not
 - **c:** ***-------**
 - **p:** 0.45
f: Maria no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...

Mary

Maria

Mary did not

c: **------
p: 0.3

Mary

c: *--------
p: 0.9

Mary not

c: **------
p: 0.1

Mary did not

c: **------
p: 0.45

not

c: *--------
p: 0.9

not

c: **------
p: 0.1

slap

c: *****----
p: 0.316

Q[0] Q[1] Q[2] ...

Tuesday, February 19, 13
Pruning

• Pruning strategies
 – histogram pruning: keep at most k hypotheses in each stack
 – stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)

• Computational time complexity of decoding with histogram pruning

 $O(\text{max stack size } \times \text{ translation options } \times \text{ sentence length})$

• Number of translation options is linear with sentence length, hence:

 $O(\text{max stack size } \times \text{ sentence length}^2)$

• Quadratic complexity
Reordering Limits

• Limiting reordering to maximum reordering distance

• Typical reordering distance 5–8 words
 – depending on language pair
 – larger reordering limit hurts translation quality

• Reduces complexity to linear

\[O(\text{max stack size} \times \text{sentence length}) \]

• Speed / quality trade-off by setting maximum stack size
Translating the Easy Part First?

the tourism initiative addresses this for the first time

both hypotheses translate 3 words
worse hypothesis has better score
Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
 - translation model: cost known
 - language model: output words known, but not context
 \[\rightarrow\] estimate without context
 - reordering model: unknown, ignored for future cost estimation
Cost Estimates from Translation Options

<table>
<thead>
<tr>
<th>Tourism Initiative Addresses</th>
<th>this for the first time</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>-1.5</td>
<td>-2.4</td>
</tr>
<tr>
<td>-4.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>-1.4</td>
<td>-1.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.9</td>
</tr>
<tr>
<td>-1.6</td>
<td>-1.3</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.2</td>
</tr>
<tr>
<td>-2.7</td>
<td>-2.3</td>
</tr>
<tr>
<td>-2.3</td>
<td>-2.3</td>
</tr>
<tr>
<td>-2.3</td>
<td></td>
</tr>
</tbody>
</table>

Cost of cheapest translation options for each input span (log-probabilities)
Cost Estimates for all Spans

- Compute cost estimate for all contiguous spans by combining cheapest options

<table>
<thead>
<tr>
<th>first word</th>
<th>future cost estimate for (n) words (from first)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>-1.0</td>
</tr>
<tr>
<td>tourism</td>
<td>-2.0</td>
</tr>
<tr>
<td>initiative</td>
<td>-1.5</td>
</tr>
<tr>
<td>addresses</td>
<td>-2.4</td>
</tr>
<tr>
<td>this</td>
<td>-1.4</td>
</tr>
<tr>
<td>for</td>
<td>-1.0</td>
</tr>
<tr>
<td>the</td>
<td>-1.0</td>
</tr>
<tr>
<td>first</td>
<td>-1.9</td>
</tr>
<tr>
<td>time</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

- Function words cheaper (the: -1.0) than content words (tourism: -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)
Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning
 - left hypothesis starts with hard part: the tourism initiative
 score: -5.88, future cost: -6.1 \rightarrow total cost -11.98
 - middle hypothesis starts with easiest part: the first time
 score: -4.11, future cost: -9.3 \rightarrow total cost -13.41
 - right hypothesis picks easy parts: this for ... time
 score: -4.86, future cost: -9.1 \rightarrow total cost -13.96
f: Maria no dio una bofetada a la bruja verde

Future costs make these hypotheses comparable.
Other Decoding Algorithms

- A* search
- Greedy hill-climbing
- Using finite state transducers (standard toolkits)
A* Search

- Uses admissible future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created
Greedy Hill-Climbing

• Create one complete hypothesis with depth-first search (or other means)

• Search for better hypotheses by applying change operators
 – change the translation of a word or phrase
 – combine the translation of two words into a phrase
 – split up the translation of a phrase into two smaller phrase translations
 – move parts of the output into a different position
 – swap parts of the output with the output at a different part of the sentence

• Terminates if no operator application produces a better translation
Marginal Decoding

\[e^* = \arg \max_e p(e \mid f) \]

\[= \arg \max_e p(f \mid e) \times p(e) \]

\[\approx \arg \max_e p(f, a \mid e) \times p(e) \]

Does this last approximation matter?

- Variational & MCMC explored
- **marginal** benefits, depending on training
- Really hard problem (Sima’an, 1997)
Maria no dio una bofetada a la bruja verde

Adapted from Koehn (2006)
Maria no dio una bofetada a la bruja verde

Adapted from Koehn (2006)
Maria no dio una bofetada a la bruja verde.
Decoding algorithm

• Translation as a search problem
• Partial hypothesis keeps track of
 • which source words have been translated \((\text{coverage vector}) \)
 • \(n \)-1 most recent words of English (for LM!)
 • a back pointer list to the previous hypothesis + (e,f) phrase pair used
 • the (partial) translation probability
 • the estimated probability of translating the remaining words
 (precomputed, a function of the coverage vector)
• **Start state**: no translated words, \(E=\langle s \rangle \), bp=nil
• **Goal state**: all translated words
Decoding algorithm

- \(Q[0] \leftarrow \) Start state
- for \(i = 0 \) to \(|f| - 1 \)
 - Keep \(b \) best hypotheses at \(Q[i] \)
 - for each hypothesis \(h \) in \(Q[i] \)
 - for each untranslated span in \(h.c \) for which there is a translation \(<e,f>\) in the phrase table
 - \(h' = h \) extend by \(<e,f>\)
 - Is there an item in \(Q[|h'.c|] \) with = LM state?
 - yes: update the item bp list and probability
 - no: \(Q[|h'.c|] \leftarrow h' \)
 - Find the best hypothesis in \(Q[|f|] \), reconstruction translation by following back pointers
Maria no dio una bofetada a la bruja verde

f

Q[0] Q[1] Q[2] ...

é: <s>
c: --------
p: 1.0
f: María no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...

Mary

\(e: <s> \) Mary
\(c: *-------- \)
\(p: 0.9 \)

Mary

\(e: <s> \)
\(c: *-------- \)
\(p: 1.0 \)
f: Maria no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...

Mary

Maria

Mary

Maria

Maria

no dio una bofetada a la bruja verde

Tuesday, February 19, 13
$$f: \text{Maria no dio una bofetada a la bruja verde}$$

Q[0] Q[1] Q[2] ...

Mary

Maria

Mary did not

did not

Q[0] Q[1] Q[2] ...
f: Maria no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...
f: Maria no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...

Mary did not

Maria

did not

Mary did not

Maria

did not

Mary
f: Maria no dio una bofetada a la bruja verde

Mary: *-------
p: 0.9

Mary did not: **-------
p: 0.1

Maria: *-------
p: 0.3

Mary did not: **-------
p: 0.45

not: Mary not

c: **-------
p: 0.316

slap: not slap

c: ****------
p: 0.316
Reordering

- Language express words in different orders
 - bruja verde vs. green witch
- Phrase pairs can “memorize” some of these
- More general: in decoding, “skip ahead”
- Problem:
 - Won’t “easy parts” of the sentence be translated first?
- Solution:
 - **Future cost estimate**
 - For every **coverage vector**, estimate what it will cost to translate the remaining untranslated words
 - When pruning, use $p \times \text{future cost}$!
Maria no dio una bofetada a la bruja verde

Q[0] Q[1] Q[2] ...

Mary

Maria

\begin{itemize}
 \item \mathbf{e}: <s> Mary
 \item \mathbf{c}: *--------
 \item p: 0.9 \quad fc: 8.6e-9
\end{itemize}

\begin{itemize}
 \item \mathbf{e}: <s> Maria
 \item \mathbf{c}: *--------
 \item p: 0.3 \quad fc: 8.6e-9
\end{itemize}
f: Maria no dio una bofetada a la bruja verde

Maria

Q[0] Q[1] Q[2] ...

Not

Mary

Not: <s> Not
p: 0.4 fc: 1.0e-9

c: *--------
p: 0.4 fc: 8.6e-9

Maria

e: <s> Maria
c: *--------
p: 0.9 fc: 8.6e-9

Mary

e: <s> Mary
c: *--------
p: 0.9 fc: 8.6e-9

p: 1.0 fc: 1.5e-9

e: <s> No
Maria no dio una bofetada a la bruja verde

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>0.9</td>
<td>8.6e-9</td>
</tr>
<tr>
<td>Maria</td>
<td>0.3</td>
<td>8.6e-9</td>
</tr>
<tr>
<td>Not</td>
<td>0.4</td>
<td>1.0e-9</td>
</tr>
</tbody>
</table>

Future costs make these hypotheses comparable.
Decoding summary

• Finding the best hypothesis is NP-hard
 • Even with no language model, there are an exponential number of states!
 • Solution 1: limit reordering
 • Solution 2: (lossy) pruning