Structure and Support Vector Machines

SPFLODD

October 31, 2013
Outline

• SVMs for structured outputs
 – Declarative view
 – Procedural view
Warning: Math Ahead
Notation for Linear Models

- Training data: \{ (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \}
- Testing data: \{ (x_{N+1}, y_{N+1}), \ldots, (x_{N+N'}, y_{N+N'}) \}
- Feature function: \(g \)
- Weights: \(w \)
- Decoding:
 \[
 \text{decode}(w, x) = \arg \max_y w^\top g(x, y)
 \]
- Learning:
 \[
 \text{learn} \left(\{(x_i, y_i)\}_{i=1}^N \right) = \arg \max_w \Phi \left(w, \{(x_i, y_i)\}_{i=1}^N \right)
 \]
- Evaluation:
 \[
 \frac{1}{N'} \sum_{i=1}^{N'} \text{cost} \left(\text{decode} \left(\text{learn} \left(\{(x_i, y_i)\}_{i=1}^N \right), x_{N+i}, y_{N+i} \right) \right)
 \]
The Ideal Loss Function

- Convex
- Continuous
- Cost-aware
Cost and Margin

• The “margin” is an important concept when we take the linear models point of view.
 – A “large margin” means that the correct output is well-separated from the incorrect outputs.

• Neither log loss nor “perceptron loss” takes into account the cost function, though.
 – In other words, some incorrect outputs are worse than others.
Multiclass SVM (Crammer and Singer, 2001)

\[
\begin{align*}
\max_w \gamma \\
\text{s.t. } & \|w\| \leq 1 \\
\forall i, \forall y, \ w^T g(x_i, y_i) - w^T g(x_i, y) \geq \begin{cases}
\gamma & \text{if } y \neq y_i \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

- The above can be understood as a 0-1 cost; let’s generalize a bit:

\[
\begin{align*}
\max_w \gamma \\
\text{s.t. } & \|w\| \leq 1 \\
\forall i, \forall y, \ w^T g(x_i, y_i) - w^T g(x_i, y) \geq \gamma \text{cost}(y, y_i)
\end{align*}
\]
Max-Margin Markov Networks

- **Starting point:** multiclass SVM (Crammer and Singer, 2001)

\[
\begin{align*}
\max_{\mathbf{w}} & \quad \gamma \\
\text{s.t.} & \quad \|\mathbf{w}\| \leq 1 \\
& \quad \forall i, \forall y, \quad \mathbf{w}^\top g(x_i, y_i) - \mathbf{w}^\top g(x_i, y) \geq \gamma \text{cost}(y, y_i)
\end{align*}
\]
Max-Margin Markov Networks

• Standard transformation to get rid of explicit mention of γ, plus slack variables in case the constraints cannot be met:

$$
\min_{w} \frac{C}{2} \|w\|_2^2 + \sum_{i=1}^{N} \xi_i \\
\text{s.t. } \forall i, \forall y, \ w^T g(x_i, y_i) - w^T g(x_i, y) \geq \text{cost}(y, y_i) - \xi_i
$$

• Notice:

$$
\forall i, \forall y, \xi_i \geq -w^T g(x_i, y_i) + w^T g(x_i, y) + \text{cost}(y, y_i) \\
\forall i, \xi_i \geq \max_y \left(-w^T g(x_i, y_i) + w^T g(x_i, y) + \text{cost}(y, y_i)\right)
$$
Max-Margin Markov Networks

- Having solved for the slack variables, we can plug in; we now have an unconstrained problem:

\[
\min_w \frac{C}{2} \|w\|_2^2 + \sum_{i=1}^{N} -w^T g(x_i, y_i) + \max_y w^T g(x_i, y) + \text{cost}(y, y_i)
\]

- Ratliff, Bagnell, and Zinkevich (2007): subgradient descent (or stochastic version) – much, much simpler approach to optimizing this function.
 - And more perceptron-like!

\[-g_j(x, y) + g_j(x, \text{cost}_{\text{augmented}_\text{decode}}(w, x))\]
Structured Hinge Loss

• Small change to the perceptron loss:

\[L(w, x, y) = -w^T g(x, y) + \max_{y'} w^T g(x, y') + \text{cost}(y', y) \]

• Resulting subgradient:

\[-g_j(x, y) + g_j(x, \text{cost_augmented_decode}(w, x)) \]

— Rather than merely decoding, find a candidate \(y' \) that is both high-scoring and \textit{dangerous}. \]
Structured Hinge

• Three different lines of work all arrived at this idea, or something very close.
 – Structural support vector machines (Tsochantaridis, Joachims, Hoffman, and Altun, 2005)
 – Online passive-aggressive algorithms (Crammer, Keshet, Dekel, Shalev-Shwartz, and Singer, 2006)

• Important developments in optimization techniques since then!
 – I’ll highlight what I think it’s most useful to know.
I’m Taking Liberties

• The M³N view of the world really thinks about outputs as configurations in a Markov network.

• They assume y corresponds to a set of random variables, each of which gets a label in a finite set.

• Their cost function is Hamming cost: “how many r.v.s do I predict incorrectly?”
 – This is convenient and makes sense for their applications. But it’s not as general as it could be.
Cost-Augmented Decoding

\[
\text{decode}(w, x) = \arg \max_{y'} w^\top g(x, y')
\]

\[
\text{cost} \text{-augmented decode}(w, x, y) = \arg \max_{y'} w^\top g(x, y') + \text{cost}(y', y)
\]

• Efficient decoding is possible when the features factor locally:

\[
g(x, y) = \sum_p f(x, \text{part}_p(y))
\]

• Efficient cost-augmented decoding requires that the cost function break into parts the same way:

\[
\text{cost}(y', y) = \sum_p \text{local cost}(\text{part}_p(y'), y)
\]
An Exercise

• If the features are such that we can use the Viterbi algorithm for decoding, what are some cost functions we could inside an efficient cost-augmented decoding algorithm that’s a very small change to Viterbi?
Max-Margin Markov Networks

• Taskar et al. actually work through a dual version of the problem.
 – Primal and dual are both QPs; exponentially many constraints or variables, respectively.

• Key trick: factored dual.
 – Enables kernelized factors in the MN.
 – Actual algorithm is sequential minimal optimization (SMO) for SVMs, a coordinate ascent method (Platt, 1999).

• The paper includes a generalization bound that is argued to improve over the Collins perceptron.

• Experiments: handwriting recognition, text classification for hyperlinked documents.
Structural SVM

• Tsochantaridis et al. (2005) – extends their 2004 paper.
• Slightly different version of the loss function:

\[
\min_w \frac{C}{2} \|w\|^2_2 + \sum_{i=1}^{N} \xi_i
\]

s.t. \(\forall i, \forall y, \ w^\top g(x_i, y_i) - w^\top g(x_i, y) \geq +1 - \frac{\xi_i}{\text{cost}(y, y_i)} \)

– Alternative version of cost-augmented decoding (“slack rescaling” as opposed to Taskar et al.’s “margin rescaling”)
Optimization Algorithms for SSVMs

- Taskar et al. (2003): SMO based on factored dual
- Bartlett et al. (2004) and Collins et al. (2008): exponentiated gradient
- Tsochantaridis et al. (2005): cutting planes (based on dual)
- Taskar et al. (2005): dual extragradient

Easiest to use, in my opinion:

- Ratliff et al. (2006): (stochastic) subgradient descent
- Crammer et al. (2006): online “passive-aggressive” algorithms
“Passive Aggressive” Learners

• Starting point is the perceptron, and the focus is on the step size.

• In NLP, people often use a specific instance called “1-best MIRA” (margin infused relaxation algorithm).
 – Sometimes with regular decoding, sometimes cost-augmented decoding.

• I do not understand the name.
Passive-Aggressive Update in a Nutshell ("1-best MIRA")

- Given x (and y), perform decoding (or cost-augmented decoding) to obtain y'.
- To get the updated weights, solve:

 $\min_{w'} \| w' - w \|^2_2$

 s.t. $w^T g(x, y) - w^T g(x, y') \geq \text{cost}(y', y)$

- Closed form solution!
 - Essentially, a subgradient update with a closed-form step size.
Perceptron and PA

• The PA papers (e.g., Crammer et al., 2006) take a procedural view of online learning and prove convergence and regret-style bounds.

• An alternative view, described by Martins et al. (2010), derives the same updates via dual coordinate ascent.
 – Confusing name: it doesn’t work in the dual!
 – More general: applies to many other loss functions, so you can get a closed-form step size for perceptron and CRFs.
 – Assumes L_2 regularization; role of regularization constant C is very clear in the form of the update.
Dual Coordinate Ascent Update

\[
\mathbf{w} \leftarrow \mathbf{w} - \min \left\{ \frac{1}{C}, \frac{L(\mathbf{w}, x, y)}{\|\nabla_{\mathbf{w}} L(\mathbf{w}, x, y)\|_2^2} \right\} \nabla_{\mathbf{w}} L(\mathbf{w}, x, y)
\]

- Assumes L$_2$ regularization.
- 1-best MIRA is a special case with structured hinge loss.
- Can get regularization into perceptron this way (use perceptron loss).
- Can get closed-form step size for CRF stochastic SGD.
Hinge Loss and Log Loss

• Hinge loss (M³N):
 \[-w^\top g(x, y) + \max_{y'} w^\top g(x, y') + \text{cost}(y', y)\]

• Log loss (CRF):
 \[-w^\top g(x, y) + \log \sum_{y'} \exp w^\top g(x, y')\]
Aside: Probabilities *and* Cost?

• “Softmax margin” (Gimpel and Smith, 2010):

\[-w^\top g(x, y) + \log \sum_{y'} \exp (w^\top g(x, y') + \text{cost}(y', y))\]
Loss Functions You Know

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression of $L(w, x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log loss (joint)</td>
<td>$- \log p(x, y \mid w)$</td>
</tr>
<tr>
<td>Log loss (conditional)</td>
<td>$- \log p(y \mid x, w)$</td>
</tr>
<tr>
<td>Cost</td>
<td>$\text{cost}(\text{decode}(w, x), y)$</td>
</tr>
<tr>
<td>Expected cost, a.k.a. “risk”</td>
<td>$\mathbb{E}_{p(Y \mid x, w)}[\text{cost}(Y, y)]$</td>
</tr>
<tr>
<td>Perceptron loss</td>
<td>$\max_{y'} w^\top g(x, y') - w^\top g(x, y)$</td>
</tr>
<tr>
<td>Hinge (margin rescaling version)</td>
<td>$\max_{y'} w^\top g(x, y') + \text{cost}(y', y) - w^\top g(x, y)$</td>
</tr>
</tbody>
</table>
On Regularization

• In principle, this choice is orthogonal to the loss function.
• L_2 is the most common starting place.
• L_1 and other sparsity-inducing regularizers are attracting more attention lately.
 – But they make optimization more complicated!
Does this matter?
Practical Advice

- Features still more important than the loss function.
 - But general, easy-to-implement algorithms are quite useful!
- Perceptron is easiest to implement.
- CRFs and SSVMs usually do better.
- If the cost function factors locally, I recommend using a hinge loss and stochastic subgradient descent.
- Tune the regularization constant.
 - Never on the test data.