
Approximate Inference:  
Randomized Methods

October 15, 2015

Topics

• Hard Inference
– Local search & hill climbing
– Stochastic hill climbing / Simulated Annealing

• Soft Inference
– Monte-Carlo approximations
– Markov-Chain Monte Carlo methods
• Gibbs sampling
• Metropolis Hastings sampling

– Importance Sampling

Local Search

• Start with a candidate solution
• Until (time > limit) or no changes possible:
– Apply a local change to generate a new candidate

solutions
– Pick the one with the highest score (“steepest

ascent”)
• A neighborhood function maps a search state

(+ optionally, algorithm state) to a set of
neighboring states
– Assumption: computing the score (cf. unnormalized

probability) of the new state is inexpensive

Hill Climbing

time flies like an arrow

NN NN VB DT NN

Hill Climbing

time flies like an arrow

NN NN VB DT NN

NN  
VB  
VBD 
DT
NNS  
P

Hill Climbing

time flies like an arrow

NN NN VB DT NN

NN  
VB  
VBD 
DT
NNS  
P

Hill Climbing

time flies like an arrow

NN NNS VB DT NN

NN  
VB  
VBD 
DT
NNS  
P

Hill Climbing

time flies like an arrow

NN NNS VB DT NN

NN  
VB  
VBD 
DT
NNS  
P

Hill Climbing

time flies like an arrow

NN NNS P DT NN

…

Hill Climbing: Sequence Labeling

• Start with greedy assignment – O(n|L|)
• While stop criterion not met
– For each label position (n of them)
• Consider changing to any label, including no

change

• When should we stop?

Fixed number of iterations

• Let’s say we run the previous algorithm
for |L| iterations
– The runtime is O(n|L|2)
– The Viterbi runtime for a bigram model is

O(n|L|2)

• Here’s where it gets interesting:
– Now imagine we were using a k-gram model 

Viterbi runtime: O(n|L|k)
–We could get arbitrarily better speedup!

Local Search

• Pros
– This is an “any time” algorithm: stop any

time and you will have a solution
• Cons
– There is no guarantee that we found a good

solution
– Local optima: to get to a good solution, you

have to go through a bad scoring solution
– Plateau: you get caught on a plateau and

you can either go down or “stay the same”

In Pictures

Plateau

Local Optima: Random Restarts

• Start from lots of different places
• Look at the score of the best solution
• Pros
– Easy to parallelize
– Easy to implement

• Cons
– Lots of computational work

• Interesting paper:

Zhang et al. (2014) Greed is Good if Randomized: New Inference for Dependency 
Parsing. Proc. EMNLP.

Local Optima: Take Bigger Steps

• We can use any neighborhood function!
• Why not use a bigger neighborhood

function?
– E.g., consider two words at once

Local Search

time flies like an arrow

NN NN VB DT NN

Local Search

time flies like an arrow

NN NN VB DT NN

NN  
VB  
VBD 
DT
NNS  
P

NN  
VB  
VBD 
DT
NNS  
P

Local Search

time flies like an arrow

NN VB VB DT NN

NN  
VB  
VBD 
DT
NNS  
P

NN  
VB  
VBD 
DT
NNS  
P

Neighborhood Sizes

• In general: neighborhood size is exponential
in the number of variables you are
considering changing

• But, sometimes you can use dynamic
programming (or other combinatorial
algorithms) to search exponential spaces in
polytime
– Consider a sequence labeling problem where you

have a bigram Markov model + some global
features

– Example: NER with constraints that say that all
phrases should have the same label across a
document

Stochastic Hill Climbing

• In general, there is no neighborhood
function that will give you correct and
efficient local search
– Hill climbing may still be good enough!
– “Some of my best friends are hill climbing

algorithms!” (EM)
• Another variation
– Replace the arg max with a stochastic

decision: pick low-scoring decisions with
some probability

Simulated Annealing

• View configurations as having an “energy” 
 

• Pick change in state by sampling 
 

• Start with a high “temperature” (model
specific)

• Gradually cool down to T=0
• Important: keep track of best scoring x so far!

In Pictures

In Pictures

Simulated Annealing

• We don’t have to compute the partition
function, just differences in energy

• In general:
– Better solutions for slower annealing

schedules
– For probabilistic models, T=1 corresponds to

Gibbs sampling (more in a few slides),
provided certain conditions are met on the
neighborhood function

Whither Soft Inference?

• As we discussed, hard inference isn’t the
only game in town

• We can use local search to approximate
soft inference as well
– Posterior distributions
– Expected values of functions under

distributions

• This brings us to the family of Monte
Carlo techniques

Monte Carlo Approximations

• Monte Carlo techniques let you
– Approximately represent a distribution p(x) [x

can be discrete, continuous, or mixed] using a
collection of N samples from p(x)

– Approximate marginal probabilities of x using
samples from a joint distribution p(x,y)

– Approximate expected values of f(x) using
samples from p(x)

Monte Carlo approximation of a Gaussian distribution:

Monte Carlo approximation of a ??? distribution:

Monte Carlo Questions

• How do we generate samples from the
target distribution?
– Direct (or “perfect”) sampling
– Markov-Chain MC methods (Gibbs, Metropolis-

Hastings)

• How good are the approximations?

Monte Carlo Approximations
“Samples”

Point mass at X(i)

Monte Carlo Expectations

Monte Carlo estimator of

Monte Carlo Expectations

• Nice properties
– Estimator is unbiased
– Estimator is consistent
– Approximation error decreases at a rate of 

O(1/N), independent of the dimension of X
• Problems
–We don’t generally know how to sample from

p
–When we do, the sampling scheme would be

linear in dim(X)

Direct Sampling from p

• Sampling from p is generally hard
–We may need to compute some very hard

marginal quantities
• Claim. For every Viterbi/Inside-Outside

algorithm there is a sampling algorithm
that you get with the same “start up” cost
– There is a question about this in the HW…

• But we want to use MC approximations
when we can’t run Inside-Outside!

Gibbs Sampling

• Markov chain Monte Carlo (MCMC) method
– Build a Markov model
• The states represent samples from p
• Transitions = Neighborhoods from local search!
• Transition probabilities constructed such that the

MM’s stationary distribution is p

– MCMC samples are correlated
• Taking every m samples can make samples more

independent (How big should m be?)

Gibbs Sampling

• Gibbs sampling relies on the fact that
sampling from p(a|b,c,d,e,f) is easier
than sampling from p(a,b,c,d,e,f)

• Algorithm
–We want N samples from
– The ith sample is
– Start with some x(0)
– For each sample i=1,…,N
• For each variable j=1,…,m

– Sample

The Beauty Part: No More Partitions

Requirements

• There must be a positive probability path
between any two states

• Process must satisfy detailed balance 

– Ie, this is a reversible Markov process
– Important: This does not mean that you have

to be able to reverse what happened at time
(t) at time (t+1). Why?

Ensuring Detailed Balance

• Option 1: Visit all variables in a deterministic
order that is independent of their current
settings

• Option 2: Visit variables uniformly at
random, independently of their current
settings

• Option 3: Unfortunately, both of the above
may not be feasible
– Other orders are possible, but you have to prove

that detailed balance obtains. This can be a pain.

Glossary

• Mixing time
– How long until a Markov chain approaches the

stationary distribution?
• Collapsed sampling
– Marginalize some variables during sampling
– Obviously: marginalize variables you don’t care

about!
• Block sampling
– Resample a block of random variables
– This is exactly equivalent to the “large

neighborhoods” idea – goal: reduce mixing time

Gibbs Sampling

• How do we sample trees?
• How do we sample segmentations?
• Key idea: sampling representation
– Encode your random structure as a set of

random variables
– Important: these will not (necessarily) be

the same as your model

Sampling Representations

:

Sampling Representations

:

:
B C B B C C B B B B C B C B B B

Sampling Representations

:

:
B C B B B B C C C B B C B C C B

Sampling Representations

:

 :

Sampling Representations

:

 :

Sampling Representations

:

 :

Sampling Representations

• Requirements
– Define reasonably sized neighborhoods
– Model score changes should be easy to compute

• Standard tricks
– Binary variables that indicate breaks
– Random variables that indicate span lengths
– Categorical random variables that indicate

break,type

• Many papers just written on sampling
representations for structured problems!

How Things Go Wrong

• Three common failure modes
– Mixing time is awful
– Sampling density is intractable/incomputable
– Variance of estimates (e.g., of expectations)

is too high
• This is why MCMC methods are still an

active area of research
• We consider two (potential) solutions that

rely on proposal distributions

Using Proposal Distributions

• Idea: sample from a distribution that
“looks like” the distribution you want to
sample from, i.e. or
– Common trade off: good approximation of p

vs. easy to sample from

• Then perform some kind of correction
using p (or, usually, p*C)
– Metropolis-Hastings: possibly reject sample
– Importance sampling: reweight sample

What Proposal Distribution?

• Specifics depend on your problem
– Sample from a bigram HMM’s posterior distribution

as a proposal for a k-gram HMM
– Sample from a Gaussian as a proposal for some

other continuous density
– Sample from an unconditional distribution as a

proposal for a conditional distribution
• In general: good proposal distributions have

heavier tails

Metropolis Hastings Sampling

• Very simple strategy for incorporating a
proposal distribution

• Can be used to propose full ensemble of
variables, a single variable, or anything in
between

• Standard uses
– Sampling continuous variables (e.g., sample from

Gaussian and accept into non-Gaussian
distribution)

– Sample sequence or tree from PCFG/HMM and
accept into model with non-local factors

Metropolis Hastings Sampling

• The MH algorithm works as follows
• For each block of variables you are resampling
– Sample
– Accept this sample with probability

– If accepted, update x
– Otherwise x remains the same

Metropolis Hastings Sampling

• Note: with an unconditional proposal

• Also note: you only need to be able to
sample from p and q and evaluate them
up to a fixed factor (e.g., partition)

Metropolis-Hastings

• Pros
– A paper cited 18,000 times can’t be wrong!
– Hand-crafted proposal distributions give you

the ability to improve performance

• Cons
– Keep track of your rejections
– Variance of computed quantities can be

exceedingly high

Importance Sampling

• MH samples can be highly correlated -> high
variance of MC estimates of expectations

• Importance sampling is a technique for
reducing variance (albeit by increasing bias)

• Intuition
– Rather than rejecting bad samples, down-weight

them appropriately
• Benefits
– Lower variance
– Biased, but still consistent
– Estimate of Z

Importance Sampling

• Given and importance dist.

• We define the unnormalized weight
function

• We can now write

Importance Sampling

• Given and importance dist.

• We define the unnormalized weight
function

• We can now write

Importance Sampling

• Given and importance dist.

• We define the unnormalized weight
function

• We can now write

Importance Sampling

• Given and importance dist.

• We define the unnormalized weight
function

• We can now write

Importance Sampling

Notice that this has the form of an expected value  
of w(x) under q:

We can replace this with a Monte Carlo estimate

Importance Sampling

Notice that this has the form of an expected value  
of w(x) under q:

We can replace this with a Monte Carlo estimate

Importance Sampling

This lets us derive the following approximation:

Intuitively, we have reweighted each sample  
x(i) from q(x) with an importance weight

Importance Sampling

This lets us derive the following approximation:

Intuitively, we have reweighted each sample  
x(i) from q(x) with an importance weight

Importance Sampling
IS Expectations are defined straightforwardly as

Importance Sampling

• You can show
– That the IS estimator is biased
– That the IS estimator is consistent
– That the IS estimator obeys a central limit

theorem with asymptotic variance

– That the IS estimator is more efficient than
rejection sampling

Particle Filtering

• Particle filtering is a special kind of
importance sampling
– It creates proposal distributions by conditioning

only on the past and current observations
– Each “particle” is a single sample that is built up

progressively across time
• This looks a lot like beam search except you sample a

single decision at each time step and then discard
anything else

– As time progresses, you figure out that some
particles have a bad importance weight and others
are good
• Key idea: throw out low-weight particles and duplicate

high weight particles

Summary

• Monte Carlo techniques are a huge field of
research
– This is a survey of the important ones that

are used in structured prediction

• We will return to these methods when we
talk about Bayesian unsupervised learning

