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Topics

• Hard Inference 
– Local search & hill climbing 
– Stochastic hill climbing / Simulated Annealing 

• Soft Inference 
– Monte-Carlo approximations 
– Markov-Chain Monte Carlo methods 
• Gibbs sampling 
• Metropolis Hastings sampling 

– Importance Sampling



Local Search

• Start with a candidate solution 
• Until (time > limit) or no changes possible: 
– Apply a local change to generate a new candidate 

solutions 
– Pick the one with the highest score (“steepest 

ascent”) 
• A neighborhood function maps a search state 

(+ optionally, algorithm state) to a set of 
neighboring states 
– Assumption: computing the score (cf. unnormalized 

probability) of the new state is inexpensive
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Hill Climbing: Sequence Labeling

• Start with greedy assignment – O(n|L|) 
• While stop criterion not met 
– For each label position (n of them) 
• Consider changing to any label, including no 

change 

• When should we stop?



Fixed number of iterations

• Let’s say we run the previous algorithm 
for |L| iterations 
– The runtime is O(n|L|2) 
– The Viterbi runtime for a bigram model is 

O(n|L|2) 

• Here’s where it gets interesting: 
– Now imagine we were using a k-gram model 

Viterbi runtime: O(n|L|k) 
–We could get arbitrarily better speedup!



Local Search

• Pros 
– This is an “any time” algorithm: stop any 

time and you will have a solution 
• Cons 
– There is no guarantee that we found a good 

solution 
– Local optima: to get to a good solution, you 

have to go through a bad scoring solution 
– Plateau: you get caught on a plateau and 

you can either go down or “stay the same”



In Pictures

Plateau



Local Optima: Random Restarts

• Start from lots of different places 
• Look at the score of the best solution 
• Pros 
– Easy to parallelize 
– Easy to implement 

• Cons 
– Lots of computational work 

• Interesting paper:

Zhang et al. (2014) Greed is Good if Randomized: New Inference for Dependency 
Parsing. Proc. EMNLP.



Local Optima: Take Bigger Steps

• We can use any neighborhood function! 
• Why not use a bigger neighborhood 

function? 
– E.g., consider two words at once
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Neighborhood Sizes

• In general: neighborhood size is exponential 
in the number of variables you are 
considering changing 

• But, sometimes you can use dynamic 
programming (or other combinatorial 
algorithms) to search exponential spaces in 
polytime 
– Consider a sequence labeling problem where you 

have a bigram Markov model + some global 
features 

– Example: NER with constraints that say that all 
phrases should have the same label across a 
document



Stochastic Hill Climbing

• In general, there is no neighborhood 
function that will give you correct and 
efficient local search 
– Hill climbing may still be good enough! 
– “Some of my best friends are hill climbing 

algorithms!” (EM) 
• Another variation 
– Replace the arg max with a stochastic 

decision: pick low-scoring decisions with 
some probability



Simulated Annealing

• View configurations as having an “energy” 
 

• Pick change in state by sampling 
 

• Start with a high “temperature” (model 
specific) 

• Gradually cool down to T=0 
• Important: keep track of best scoring x so far!
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Simulated Annealing

• We don’t have to compute the partition 
function, just differences in energy 

• In general: 
– Better solutions for slower annealing 

schedules 
– For probabilistic models, T=1 corresponds to 

Gibbs sampling (more in a few slides), 
provided certain conditions are met on the 
neighborhood function



Whither Soft Inference?

• As we discussed, hard inference isn’t the 
only game in town 

• We can use local search to approximate 
soft inference as well 
– Posterior distributions 
– Expected values of functions under 

distributions 

• This brings us to the family of Monte 
Carlo techniques



Monte Carlo Approximations

• Monte Carlo techniques let you 
– Approximately represent a distribution p(x) [x 

can be discrete, continuous, or mixed] using a 
collection of N samples from p(x) 

– Approximate marginal probabilities of x using 
samples from a joint distribution p(x,y) 

– Approximate expected values of f(x) using 
samples from p(x)



Monte Carlo approximation of a Gaussian distribution:

Monte Carlo approximation of a ??? distribution:



Monte Carlo Questions

• How do we generate samples from the 
target distribution? 
– Direct (or “perfect”) sampling 
– Markov-Chain MC methods (Gibbs, Metropolis-

Hastings) 

• How good are the approximations?



Monte Carlo Approximations
“Samples”

Point mass at X(i)



Monte Carlo Expectations

Monte Carlo estimator of



Monte Carlo Expectations

• Nice properties 
– Estimator is unbiased 
– Estimator is consistent 
– Approximation error decreases at a rate of 

O(1/N), independent of the dimension of X 
• Problems 
–We don’t generally know how to sample from 

p 
–When we do, the sampling scheme would be 

linear in dim(X)



Direct Sampling from p

• Sampling from p is generally hard 
–We may need to compute some very hard 

marginal quantities 
• Claim. For every Viterbi/Inside-Outside 

algorithm there is a sampling algorithm 
that you get with the same “start up” cost 
– There is a question about this in the HW… 

• But we want to use MC approximations 
when we can’t run Inside-Outside!



Gibbs Sampling

• Markov chain Monte Carlo (MCMC) method 
– Build a Markov model 
• The states represent samples from p 
• Transitions = Neighborhoods from local search! 
• Transition probabilities constructed such that the 

MM’s stationary distribution is p 

– MCMC samples are correlated 
• Taking every m samples can make samples more 

independent (How big should m be?)



Gibbs Sampling

• Gibbs sampling relies on the fact that 
sampling from p(a|b,c,d,e,f) is easier 
than sampling from p(a,b,c,d,e,f) 

• Algorithm 
–We want N samples from 
– The ith sample is 
– Start with some  x(0) 
– For each sample i=1,…,N 
• For each variable j=1,…,m 

– Sample 



The Beauty Part: No More Partitions



Requirements

• There must be a positive probability path 
between any two states 

• Process must satisfy detailed balance 

– Ie, this is a reversible Markov process 
– Important: This does not mean that you have 

to be able to reverse what happened at time 
(t) at time (t+1). Why?



Ensuring Detailed Balance

• Option 1: Visit all variables in a deterministic 
order that is independent of their current 
settings 

• Option 2: Visit variables uniformly at 
random, independently of their current 
settings 

• Option 3: Unfortunately, both of the above 
may not be feasible 
– Other orders are possible, but you have to prove 

that detailed balance obtains. This can be a pain.



Glossary

• Mixing time 
– How long until a Markov chain approaches the 

stationary distribution? 
• Collapsed sampling 
– Marginalize some variables during sampling 
– Obviously: marginalize variables you don’t care 

about! 
• Block sampling 
– Resample a block of random variables 
– This is exactly equivalent to the “large 

neighborhoods” idea – goal: reduce mixing time



Gibbs Sampling

• How do we sample trees? 
• How do we sample segmentations? 
• Key idea: sampling representation 
– Encode your random structure as a set of 

random variables 
– Important: these will not (necessarily) be 

the same as your model
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Sampling Representations

• Requirements 
– Define reasonably sized neighborhoods 
– Model score changes should be easy to compute 

• Standard tricks 
– Binary variables that indicate breaks 
– Random variables that indicate span lengths 
– Categorical random variables that indicate 

break,type 

• Many papers just written on sampling 
representations for structured problems!



How Things Go Wrong

• Three common failure modes 
– Mixing time is awful 
– Sampling density is intractable/incomputable 
– Variance of estimates (e.g., of expectations) 

is too high 
• This is why MCMC methods are still an 

active area of research 
• We consider two (potential) solutions that 

rely on proposal distributions



Using Proposal Distributions

• Idea: sample from a distribution that 
“looks like” the distribution you want to 
sample from, i.e.                              or 
– Common trade off: good approximation of p 

vs. easy to sample from 

• Then perform some kind of correction 
using p (or, usually, p*C) 
– Metropolis-Hastings: possibly reject sample 
– Importance sampling: reweight sample



What Proposal Distribution?

• Specifics depend on your problem 
– Sample from a bigram HMM’s posterior distribution 

as a proposal for a k-gram HMM 
– Sample from a Gaussian as a proposal for some 

other continuous density 
– Sample from an unconditional distribution as a 

proposal for a conditional distribution 
• In general: good proposal distributions have 

heavier tails



Metropolis Hastings Sampling

• Very simple strategy for incorporating a 
proposal distribution 

• Can be used to propose full ensemble of 
variables, a single variable, or anything in 
between 

• Standard uses 
– Sampling continuous variables (e.g., sample from 

Gaussian and accept into non-Gaussian 
distribution) 

– Sample sequence or tree from PCFG/HMM and 
accept into model with non-local factors



Metropolis Hastings Sampling

• The MH algorithm works as follows 
• For each block of variables you are resampling 
– Sample 
– Accept this sample with probability 

– If accepted, update x 
– Otherwise x remains the same



Metropolis Hastings Sampling

• Note: with an unconditional proposal 

• Also note: you only need to be able to 
sample from p and q and evaluate them 
up to a fixed factor (e.g., partition)



Metropolis-Hastings

• Pros 
– A paper cited 18,000 times can’t be wrong! 
– Hand-crafted proposal distributions give you 

the ability to improve performance 

• Cons 
– Keep track of your rejections 
– Variance of computed quantities can be 

exceedingly high



Importance Sampling

• MH samples can be highly correlated -> high 
variance of MC estimates of expectations 

• Importance sampling is a technique for 
reducing variance (albeit by increasing bias) 

• Intuition 
– Rather than rejecting bad samples, down-weight 

them appropriately 
• Benefits 
– Lower variance 
– Biased, but still consistent 
– Estimate of Z
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Importance Sampling

Notice that this has the form of an expected value  
of w(x) under q:

We can replace this with a Monte Carlo estimate
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Importance Sampling
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Importance Sampling
IS Expectations are defined straightforwardly as 



Importance Sampling

• You can show 
– That the IS estimator is biased 
– That the IS estimator is consistent 
– That the IS estimator obeys a central limit 

theorem with asymptotic variance 

– That the IS estimator is more efficient than 
rejection sampling



Particle Filtering

• Particle filtering is a special kind of 
importance sampling 
– It creates proposal distributions by conditioning 

only on the past and current observations 
– Each “particle” is a single sample that is built up 

progressively across time 
• This looks a lot like beam search except you sample a 

single decision at each time step and then discard 
anything else 

– As time progresses, you figure out that some 
particles have a bad importance weight and others 
are good 
• Key idea: throw out low-weight particles and duplicate 

high weight particles



Summary

• Monte Carlo techniques are a huge field of 
research 
– This is a survey of the important ones that 

are used in structured prediction 

• We will return to these methods when we 
talk about Bayesian unsupervised learning


