Approximate Inference: Randomized Methods

October 15, 2015

Topics

- Hard Inference
 - Local search & hill climbing
 - Stochastic hill climbing / Simulated Annealing
- Soft Inference
 - Monte-Carlo approximations
 - Markov-Chain Monte Carlo methods
 - Gibbs sampling
 - Metropolis Hastings sampling
 - Importance Sampling

- Start with a candidate solution
- Until (time > limit) or no changes possible:
 - Apply a local change to generate a new candidate solutions
 - Pick the one with the highest score ("steepest ascent")
- A neighborhood function maps a search state (+ optionally, algorithm state) to a set of neighboring states
 - Assumption: computing the score (cf. unnormalized probability) of the new state is inexpensive

 \bullet

Hill Climbing: Sequence Labeling

- Start with greedy assignment O(n|L|)
- While stop criterion not met
 - For each label position (n of them)
 - Consider changing to any label, including no change
- When should we stop?

Fixed number of iterations

- Let's say we run the previous algorithm for |L| iterations
 - The runtime is $O(n|L|^2)$
 - The Viterbi runtime for a bigram model is $O(n|L|^2)$
- Here's where it gets interesting:
 - Now imagine we were using a k-gram model Viterbi runtime: $O(n|L|^k)$
 - We could get arbitrarily better speedup!

Pros

– This is an "any time" algorithm: stop any time and you will have a solution

Cons

- There is no guarantee that we found a good solution
- Local optima: to get to a good solution, you have to go through a bad scoring solution
- Plateau: you get caught on a plateau and you can either go down or "stay the same"

In Pictures

Local Optima: Random Restarts

- Start from lots of different places
- Look at the score of the best solution
- Pros
 - Easy to parallelize
 - Easy to implement
- Cons
 - Lots of computational work
- Interesting paper:

Zhang et al. (2014) Greed is Good if Randomized: New Inference for Dependency Parsing. *Proc. EMNLP*.

Local Optima: Take Bigger Steps

- We can use any neighborhood function!
- Why not use a bigger neighborhood function?
 - E.g., consider two words at once

Neighborhood Sizes

- In general: neighborhood size is exponential in the number of variables you are considering changing
- But, sometimes you can use dynamic programming (or other combinatorial algorithms) to search exponential spaces in polytime
 - Consider a sequence labeling problem where you have a bigram Markov model + some global features
 - Example: NER with constraints that say that all phrases should have the same label across a document

Stochastic Hill Climbing

- In general, there is no neighborhood function that will give you correct and efficient local search
 - Hill climbing may still be good enough!
 - "Some of my best friends are hill climbing algorithms!" (EM)
- Another variation
 - Replace the arg max with a stochastic decision: pick low-scoring decisions with some probability

Simulated Annealing

View configurations as having an "energy"

$$E(\boldsymbol{x}) = -\operatorname{score}(\boldsymbol{x})$$

Pick change in state by sampling

$$\propto e^{\frac{\Delta E}{T}}$$

- $\propto e^{\frac{\Delta E}{T}}$ Start with a high "temperature" (model specific)
- Gradually cool down to T=0
- Important: keep track of best scoring x so far!

In Pictures

In Pictures

Simulated Annealing

- We don't have to compute the partition function, just differences in energy
- In general:
 - Better solutions for slower annealing schedules
 - For probabilistic models, T=1 corresponds to Gibbs sampling (more in a few slides), provided certain conditions are met on the neighborhood function

Whither Soft Inference?

- As we discussed, hard inference isn't the only game in town
- We can use local search to approximate soft inference as well
 - Posterior distributions
 - Expected values of functions under distributions
- This brings us to the family of Monte
 Carlo techniques

Monte Carlo Approximations

- Monte Carlo techniques let you
 - Approximately represent a distribution p(x) [x can be discrete, continuous, or mixed] using a collection of N samples from p(x)
 - Approximate marginal probabilities of x using samples from a joint distribution p(x,y)
 - Approximate expected values of f(x) using samples from p(x)

Monte Carlo approximation of a Gaussian distribution:

Monte Carlo approximation of a ??? distribution:

Monte Carlo Questions

- How do we generate samples from the target distribution?
 - Direct (or "perfect") sampling
 - Markov-Chain MC methods (Gibbs, Metropolis-Hastings)
- How good are the approximations?

Monte Carlo Approximations

"Samples"

$$X^{(i)} \sim p(x), \quad \text{for } i = 1, \dots, N$$

$$\hat{p}^{\text{MC}}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(x)$$

Point mass at X⁽ⁱ⁾

Monte Carlo Expectations

$$\hat{\mathbb{E}}^{\mathrm{MC}}[f(x)] = \int f(x)\hat{p}^{\mathrm{MC}}(x)dx$$
$$= \frac{1}{N} \sum_{i=1}^{N} f(X^{(i)})$$

Monte Carlo estimator of $\mathbb{E}[f(x)]$

Monte Carlo Expectations

- Nice properties
 - Estimator is unbiased
 - Estimator is consistent
 - Approximation error decreases at a rate of O(1/N), independent of the dimension of X
- Problems
 - We don't generally know how to sample from p
 - When we do, the sampling scheme would be linear in dim(X)

Direct Sampling from p

- Sampling from p is generally hard
 - We may need to compute some very hard marginal quantities
- Claim. For every Viterbi/Inside-Outside algorithm there is a sampling algorithm that you get with the same "start up" cost
 - There is a question about this in the HW...
- But we want to use MC approximations when we can't run Inside-Outside!

Gibbs Sampling

- Markov chain Monte Carlo (MCMC) method
 - Build a Markov model
 - The states represent samples from p
 - Transitions = Neighborhoods from local search!
 - Transition probabilities constructed such that the MM's stationary distribution is p
 - MCMC samples are correlated
 - Taking every m samples can make samples more independent (How big should m be?)

Gibbs Sampling

- Gibbs sampling relies on the fact that sampling from p(a|b,c,d,e,f) is easier than sampling from p(a,b,c,d,e,f)
- Algorithm

 - We want N samples from $\mathbf{X}=\{X_1,\ldots,X_m\}$ The ith sample is $\mathbf{x}^{(i)}=\{x_1^{(i)},\ldots,x_m^{(i)}\}$
 - Start with some x(0)
 - For each sample i=1,...,N
 - For each variable j=1,...,m
 - Sample $x_i^{(i)} \sim p(x_j \mid \mathbf{x}^{(i)} \backslash x_j^{(i)})$

The Beauty Part: No More Partitions

$$p(\mathbf{x}) \doteq \frac{u(\mathbf{x})}{Z}$$

$$p(x_j \mid \mathbf{x} \setminus x_j) = \frac{p(\mathbf{x})}{\sum_{x'_j \in \mathcal{X}_j} p(\mathbf{x} \setminus x_j, x'_j)}$$

$$= \frac{u(\mathbf{x})/Z}{\sum_{x'_j \in \mathcal{X}_j} u(\mathbf{x} \setminus x_j, x'_j)/Z}$$

$$= \frac{u(\mathbf{x})}{\sum_{x'_j \in \mathcal{X}_j} u(\mathbf{x} \setminus x_j, x'_j)}$$

Requirements

- There must be a positive probability path between any two states
- Process must satisfy detailed balance

$$\pi_i P_{ij} = \pi_j P_{ji}$$

- Ie, this is a reversible Markov process
- Important: This does not mean that you have to be able to reverse what happened at time (t) at time (t+1). Why?

Ensuring Detailed Balance

- Option 1: Visit all variables in a deterministic order that is independent of their current settings
- Option 2: Visit variables uniformly at random, independently of their current settings
- Option 3: Unfortunately, both of the above may not be feasible
 - Other orders are possible, but you have to prove that detailed balance obtains. This can be a pain.

Glossary

Mixing time

— How long until a Markov chain approaches the stationary distribution?

Collapsed sampling

- Marginalize some variables during sampling
- Obviously: marginalize variables you don't care about!

Block sampling

- Resample a block of random variables
- This is exactly equivalent to the "large neighborhoods" idea - goal: reduce mixing time

Gibbs Sampling

- How do we sample trees?
- How do we sample segmentations?
- Key idea: sampling representation
 - Encode your random structure as a set of random variables
 - Important: these will not (necessarily) be the same as your model

独家:图解如何开高质量民主生活会

独家:图解如何开高质量民主生活会

独家:图解如何开高质量民主生活会 ® © ® ® © © ® ® ® © ® © ® ® ®

独家:图解如何开高质量民主生活会

独家:图解如何开高质量民主生活会 ® © ® ® ® © © © ® ® © ® © © ® x₁ x₂x₃...

独家:图解如何开高质量民主生活会

独家: 图解如何开高质量民主生活。 x会x2 x3 ...

独家:图解如何开高质量民主生活会

独家: 图解如何开高质量民主生活。 x余x2 x3 ...

独家:图解如何开高质量民主生活会

独家: 图解如何开高质量民主生活。 *会**2 **3 ····

- Requirements
 - Define reasonably sized neighborhoods
 - Model score changes should be easy to compute
- Standard tricks
 - Binary variables that indicate breaks
 - Random variables that indicate span lengths
 - Categorical random variables that indicate break, type
- Many papers just written on sampling representations for structured problems!

How Things Go Wrong

- Three common failure modes
 - Mixing time is awful
 - Sampling density is intractable/incomputable
 - Variance of estimates (e.g., of expectations) is too high
- This is why MCMC methods are still an active area of research
- We consider two (potential) solutions that rely on proposal distributions

Using Proposal Distributions

- Idea: sample from a distribution that "looks like" the distribution you want to sample from x_i . $e_{\mathbf{X}} \setminus x_i$ p(x) or
 - Common trade off: good approximation of p vs. easy to sample from
- Then perform some kind of correction using p (or, usually, p*C)
 - Metropolis-Hastings: possibly reject sample
 - Importance sampling: reweight sample

What Proposal Distribution?

$$p(\mathbf{x}) > 0 \implies q(\mathbf{x}) > 0$$

- Specifics depend on your problem
 - Sample from a bigram HMM's posterior distribution as a proposal for a k-gram HMM
 - Sample from a Gaussian as a proposal for some other continuous density
 - Sample from an unconditional distribution as a proposal for a conditional distribution
- In general: good proposal distributions have heavier tails

Metropolis Hastings Sampling

- Very simple strategy for incorporating a proposal distribution
- Can be used to propose full ensemble of variables, a single variable, or anything in between
- Standard uses
 - Sampling continuous variables (e.g., sample from Gaussian and accept into non-Gaussian distribution)
 - Sample sequence or tree from PCFG/HMM and accept into model with non-local factors

Metropolis Hastings Sampling

- The MH algorithm works as follows
- For each block of variables you are resampling
 - Sample $\mathbf{x}' \sim q(\mathbf{x}' \mid \mathbf{x})$
 - Accept this sample with probability

$$A(\mathbf{x} \to \mathbf{x}') = \min \left\{ 1, \frac{p(\mathbf{x}')}{p(\mathbf{x})} \frac{q(\mathbf{x} \mid \mathbf{x}')}{q(\mathbf{x}' \mid \mathbf{x})} \right\}$$
 – If accepted, update \mathbf{x}

- Otherwise x remains the same

Metropolis Hastings Sampling

Note: with an unconditional proposal

$$A(\mathbf{x} \to \mathbf{x}') = \min \left\{ 1, \frac{p(\mathbf{x}')}{p(\mathbf{x})} \frac{q(\mathbf{x})}{q(\mathbf{x}')} \right\}$$

 Also note: you only need to be able to sample from p and q and evaluate them up to a fixed factor (e.g., partition)

Metropolis-Hastings

Pros

- A paper cited 18,000 times can't be wrong!
- Hand-crafted proposal distributions give you the ability to improve performance

Cons

- Keep track of your rejections
- Variance of computed quantities can be exceedingly high

- MH samples can be highly correlated -> high variance of MC estimates of expectations
- Importance sampling is a technique for reducing variance (albeit by increasing bias)
- Intuition
 - Rather than rejecting bad samples, down-weight them appropriately
- Benefits
 - Lower variance
 - Biased, but still consistent
 - Estimate of Z

• Given
$$p(\mathbf{x}) = \frac{u(\mathbf{x})}{Z}$$
 where $Z = \sum_{\mathbf{x} \in \mathcal{X}} u(\mathbf{x})$

· Wa define the unnormalized weight

• Given
$$p(\mathbf{x}) = \frac{u(\mathbf{x})}{Z}$$
 and importance distance where $Z = \sum_{\mathbf{x} \in \mathcal{X}} u(\mathbf{x})$ $p(\mathbf{x}) > 0 \implies q(\mathbf{x}) > 0$

Wa dafine the unnormalized weight

• Given
$$p(\mathbf{x}) = \frac{u(\mathbf{x})}{Z}$$
 and importance $dix(\mathbf{x})$ where $Z = \sum_{\mathbf{x} \in \mathcal{X}} u(\mathbf{x})$ $p(\mathbf{x}) > 0 \implies q(\mathbf{x}) > 0$

• We define the unnormalized weight function $u(\mathbf{x})$

$$w(\mathbf{x}) = \frac{u(\mathbf{x})}{q(\mathbf{x})}$$

• Given
$$p(\mathbf{x}) = \frac{u(\mathbf{x})}{Z}$$
 and importance disc \mathbf{x} where $Z = \sum_{\mathbf{x} \in \mathcal{X}} u(\mathbf{x})$ $p(\mathbf{x}) > 0 \implies q(\mathbf{x}) > 0$

• We define the **unnormalized weight** function

$$w(\mathbf{x}) = \frac{u(\mathbf{x})}{q(\mathbf{x})}$$

We can now write

$$Z = \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) q(\mathbf{x})$$

$$Z = \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) q(\mathbf{x})$$

Notice that this has the form of an expected value of w(x) under q:

$$Z = \mathbb{E}_{q(\cdot)} w(\mathbf{x})$$

$$Z = \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) q(\mathbf{x})$$

Notice that this has the form of an expected value of w(x) under q:

$$Z = \mathbb{E}_{q(\cdot)} w(\mathbf{x})$$

We can replace this with a Monte Carlo estimate

$$\hat{Z} = \hat{\mathbb{E}}_{q(\cdot)}^{\mathrm{MC}} w(\mathbf{x})$$

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}^{(i)})$$

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}^{(i)})$$

This lets us derive the following approximation:

$$\hat{p}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \frac{w(\mathbf{x})\hat{q}(\mathbf{x})}{\hat{Z}}$$

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}^{(i)})$$

This lets us derive the following approximation:

$$\hat{p}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \frac{w(\mathbf{x})\hat{q}(\mathbf{x})}{\hat{Z}}$$

Intuitively, we have reweighted each sample $\mathbf{x}^{(i)}$ from $\mathbf{q}(\mathbf{x})$ with an **importance weight**

$$\frac{w(\mathbf{x}^{(i)})}{\sum_{j=1}^{N} w(\mathbf{x}^{(j)})}$$

IS Expectations are defined straightforwardly as

$$\hat{\mathbb{E}}_{p(\cdot)}^{\mathrm{IS}}\left[f(\mathbf{x})\right] = \sum_{i=1}^{N} \left[\frac{w(\mathbf{x}^{(i)})}{\sum_{j=1}^{N} w(\mathbf{x}^{(j)})} f(\mathbf{x}^{(i)}) \right]$$

$$= \frac{1}{\hat{Z}} \sum_{i=1}^{N} w(\mathbf{x}^{(i)}) f(\mathbf{x}^{(i)})$$

$$= \frac{1}{\hat{Z}} \sum_{i=1}^{N} \frac{u(\mathbf{x}^{(i)})}{q(\mathbf{x}^{(i)})} f(\mathbf{x}^{(i)})$$

- You can show
 - That the IS estimator is biased
 - That the IS estimator is consistent
 - That the IS estimator obeys a central limit theorem with asymptotic variance

$$\frac{1}{N}\sum_{\mathbf{x}\in\mathcal{X}}\frac{p^2(\mathbf{x})}{q(\mathbf{x})}\left[f(\mathbf{x})-\mathbb{E}_{p(\mathbf{x}')}f(\mathbf{x}')\right]^2$$
 – That the IS estimator is more efficient than

rejection sampling

Particle Filtering

- Particle filtering is a special kind of importance sampling
 - It creates proposal distributions by conditioning only on the past and current observations
 - Each "particle" is a single sample that is built up progressively across time
 - This looks a lot like beam search except you sample a single decision at each time step and then discard anything else
 - As time progresses, you figure out that some particles have a bad importance weight and others are good
 - Key idea: throw out low-weight particles and duplicate high weight particles

Summary

- Monte Carlo techniques are a huge field of research
 - This is a survey of the important ones that are used in structured prediction
- We will return to these methods when we talk about Bayesian unsupervised learning