Approximate Inference:
Randomized Methods

Topics

* Hard Inference
— Local search & hill climbing
— Stochastic hill climbing / Simulated Annealing

 Soft Inference
— Monte-Carlo approximations

— Markov-Chain Monte Carlo methods
» Gibbs sampling
* Metropolis Hastings sampling

— Importance Sampling

Local Search

 Start with a candidate solution
« Until (time > limit) or no changes possible:

— Apply a local change to generate a new candidate
solutions

— Pick the one with the highest score (“steepest
ascent”)

« A neighborhood function maps a search state
(+ optionally, algorithm state) to a set of
neighboring states

— Assumption: computing the score (cf. unnormalized
probability) of the new state is inexpensive

Hill Climbing

00000

Hill Climbing
-

VBD
DT

¢ 96

Hill Climbing

NN
VB
VBD
DT

“$ 990

Hill Climbing

NN
VB
VBD
DT

“$ 990

Hill Climbing

NN
VB
VBD

co 3T oee

Hill Climbing

*9 990

Hill Climbing: Sequence Labeling

 Start with greedy assignment - O(n|L]|)

* While stop criterion not met

— For each label position (n of them)

« Consider changing to any label, including no
change

* When should we stop?

Fixed number of iterations

* Let’s say we run the previous algorithm
for |L| iterations

— The runtime is O(n|L|?)
— The Viterbi runtime for a bigram model is
O(n|L|?)
* Here’s where it gets interesting:

— Now imagine we were using a k-gram model
Viterbi runtime: O(n|L|*)

— We could get arbitrarily better speedup!

Local Search

* Pros
— This is an “any time” algorithm: stop any
time and you will have a solution
 Cons

— There is no guarantee that we found a good
solution

— Local optima: to get to a good solution, you
have to go through a bad scoring solution

— Plateau: you get caught on a plateau and
you can either go down or “stay the same”

In Pictures

Ob)cctixe function global maximum

Plateau
shoulder

local maximum

"flat" local maximum

current
state

Local Optima: Random Restarts

Start from lots of different places
Look at the score of the best solution

Pros
— Easy to parallelize
— Easy to implement

Cons
— Lots of computational work

Interesting paper:

Zhang et al. (2014) Greed is Good if Randomized: New Inference for Dependency
Parsing. Proc. EMNLP.

Local Optima: Take Bigger Steps

* We can use any neighborhood function!

* Why not use a bigger neighborhood
function?

— E.g., consider two words at once

Local Search

00000

Local Search

-
VBD
DT

DT

S eeeee

Local Search

-
VBD
DT

DT

S eeeee

Neighborhood Sizes

 In general: neighborhood size is exponential
in the number of variables you are
considering changing

* But, sometimes you can use dynamic

programming (or other combinatorial

algorithms) to search exponential spaces in

polytime

— Consider a sequence labeling problem where you
have a bigram Markov model + some global

features

— Example: NER with constraints that say that all
phrases should have the same label across a
document

Stochastic Hill Climbing

* In general, there is no neighborhood
function that will give you correct and
efficient local search
— Hill climbing may still be good enough!

— “Some of my best friends are hill climbing
algorithms!” (EM)

 Another variation

— Replace the arg max with a stochastic
decision: pick low-scoring decisions with

some probability

Simulated Annealing

View configurations as having an “energy”
E(x) = —score(x)
Pick change in state by sampling

AFE
. X e r
Start with a high “temperature” (model
specific)
Gradually cool down to T=0

Important: keep track of best scoring x so far!

In Pictures

x0

In Pictures

QN

c(x)

x0

Simulated Annealing

 We don’t have to compute the partition
function, just differences in energy

* In general:

— Better solutions for slower annealing
schedules

— For probabilistic models, T=1 corresponds to
Gibbs sampling (more in a few slides),
provided certain conditions are met on the
neighborhood function

Whither Soft Inference?

* As we discussed, hard inference isn’t the
only game in town

* We can use local search to approximate
soft inference as well

— Posterior distributions

— Expected values of functions under
distributions

* This brings us to the family of Monte
Carlo techniques

Monte Carlo Approximations

* Monte Carlo techniques let you

— Approximately represent a distribution p(x) [x
can be discrete, continuous, or mixed] using a
collection of N samples from p(x)

— Approximate marginal probabilities of x using
samples from a joint distribution p(Xx,y)

— Approximate expected values of f(x) using
samples from p(x)

Monte Carlo approximation of a Gaussian distribution:

40000+
w
=
2 200004
o
o
o
o
o
o
- 200004
.
o
-
=
©
W
g 10000 4
0+
SONMTNBREAAMANM TAD RGO NINM TNV REAMANM TVERQIAT INM TNONEON INM TABN RN
COOOOOOO0 ™mrirvsririrtrtrir PANE NN NN mmMmmmMmm MM LA A A 4 A A 4 4 J wviwanmnazZwaianaanhan
Buckets

Monte Carlo approximation of a ??? distribution:

Monte Carlo Questions

 How do we generate samples from the
target distribution?
— Direct (or “perfect”) sampling
— Markov-Chain MC methods (Gibbs, Metropolis-
Hastings)

 How good are the approximations?

Monte Carlo Approximations

“Samples”
X9 ~p(z), fori=1,...,N
1 N
1—=1

Point mass at X

Monte Carlo Expectations

EMO[f(2)] = /f(:v) (z)da

I« (i)
il F(XC
P>

Monte Carlo estimator off£[f ()]

Monte Carlo Expectations

* Nice properties
— Estimator is unbiased
— Estimator is consistent
— Approximation error decreases at a rate of
O(1/N), independent of the dimension of X
* Problems

— We don’t generally know how to sample from

p

— When we do, the sampling scheme would be
linear in dim(X)

Direct Sampling from p

« Sampling from p is generally hard
— We may need to compute some very hard
marginal quantities

» Claim. For every Viterbi/Inside-Outside
algorithm there is a sampling algorithm
that you get with the same “start up” cost

— There is a question about this in the HW...

* But we want to use MC approximations
when we can’t run Inside-Outside!

Gibbs Sampling

* Markov chain Monte Carlo (MCMC) method

— Build a Markov model
* The states represent samples from p
 Transitions = Neighborhoods from local search!

 Transition probabilities constructed such that the
MM’s stationary distribution is p

— MCMC samples are correlated

« Taking every m samples can make samples more
independent (How big should m be?)

Gibbs Sampling

* Gibbs sampling relies on the fact that
sampling from p(a|b,c,d,e,f) is easier
than sampling from p(a,b,c,d,e,f)

* Algorithm
— We want N samples fromX = {X;,... X,,}
— The ith sample isy(?) — {xgi), oy
— Start with some x(0)

— For each sample i=1,...,N
* For each variable j=1,...,m

“smee 30 play | xD\al?)

The Beauty Part: No More Partitions

p(x) = %
) — p(x)
p(aj] ‘ \ J) ng,g)(j p(X\QZ‘j,LI?;-)
 uwyz
Zm;e){j u(x\z;, CL‘;)/Z
u(x)

Zx; €X; ’LL(X\QL‘]‘, 33;)

Requirements

* There must be a positive probability path
between any two states

* Process must satisfy detailed balance
7T¢Pf,;j — ijji
— le, this is a reversible Markov process

— Important: This does not mean that you have
to be able to reverse what happened at time
(t) at time (t+1). Why?

Ensuring Detailed Balance

» Option 1: Visit all variables in a deterministic
order that is independent of their current
settings

» Option 2: Visit variables uniformly at
random, independently of their current
settings

* Option 3: Unfortunately, both of the above
may not be feasible

— Other orders are possible, but you have to prove
that detailed balance obtains. This can be a pain.

Glossary

* Mixing time
— How long until a Markov chain approaches the
stationary distribution?

* Collapsed sampling
— Marginalize some variables during sampling

— Obviously: marginalize variables you don’t care
about!

* Block sampling
— Resample a block of random variables

— This is exactly equivalent to the “large
neighborhoods” idea - goal: reduce mixing time

Gibbs Sampling

 How do we sample trees?
 How do we sample segmentations?

» Key idea: sampling representation

— Encode your random structure as a set of
random variables

— Important: these will not (necessarily) be
the same as your model

Sampling Representations

e

S e

—
=]

: =
=

= k-

-

AN

/A

Sampling Representations

IR

alnAeREREEER

e

R B AS k=
OO0 OB EE O

L1 LAL3. ..

Sampling Representations

IR

alnAeREREEER

e

R BIgAO A SHR=
® OO OO0O0E 6

L1 LAL3. ..

XEEES
©

Sampling Representations

e

Og'E O%:(O:O

S iie)

~

X

\
~

O

%3332 T3 ...

i 1]

— = e ml = N AN
ShEERFEEEFES

= = = 4+ H F
5 '8 U@ % % s+ 'H

Sampling Representations

xR ERUCASREREERS

%YE.%“ g@ %% ;Zuo 1q ['I% ‘% E; % :o: fo_ 79
%3332 r3 ...

Sampling Representations

xR ERUCASREREERS

gﬂo%_(oo g@ %% ;Zuo 1q O 'I% Uﬁo\ ié
%3332 r3 ...

Sampling Representations

* Requirements
— Define reasonably sized neighborhoods
— Model score changes should be easy to compute

« Standard tricks
— Binary variables that indicate breaks
— Random variables that indicate span lengths
— Categorical random variables that indicate
break, type
* Many papers just written on sampling
representations for structured problems!

How Things Go Wrong

* Three common failure modes
— Mixing time is awful
— Sampling density is intractable/incomputable

— Variance of estimates (e.g., of expectations)
is too high

* This is why MCMC methods are still an
active area of research

* We consider two (potential) solutions that
rely on proposal distributions

Using Proposal Distributions

* |dea: sample from a distribution that
“looks like” the distribution you want to

sample fr%}-?x\mj) p(:zt) ooor
— Common trade off: good approximation of p
vs. easy to sample from

* Then perform some kind of correction
using p (or, usually, p*C)
— Metropolis-Hastings: possibly reject sample
— Importance sampling: reweight sample

What Proposal Distribution?

p(x) >0 = q(x) >0

« Specifics depend on your problem

— Sample from a bigram HMM’s posterior distribution
as a proposal for a k-gram HMM

— Sample from a Gaussian as a proposal for some
other continuous density

— Sample from an unconditional distribution as a
proposal for a conditional distribution

 In general: good proposal distributions have
heavier tails

Metropolis Hastings Sampling

* Very simple strategy for incorporating a
proposal distribution

« Can be used to propose full ensemble of
variables, a single variable, or anything in
between

 Standard uses

— Sampling continuous variables (e.g., sample from
Gaussian and accept into non-Gaussian
distribution)

— Sample sequence or tree from PCFG/HMM and
accept into model with non-local factors

Metropolis Hastings Sampling

* The MH algorithm works as follows

* For each block of variables you are resampling
— Sample X/ ~ q(x' | x) -
— Accept this sample with probability

/ /
A(x — x') = min {1, p(x') q(X/‘ x) }
— If accepted, update x p(x) q(x" | x)
— Otherwise x remains the same

Metropolis Hastings Sampling

* Note: with an unconditional proposal

A(x = x') = min {1, plx) a(x) }

p(x) q(x')

* Also note: you only need to be able to
sample from p and g and evaluate them
up to a fixed factor (e.g., partition)

Metropolis-Hastings

* Pros
— A paper cited 18,000 times can’t be wrong!

— Hand-crafted proposal distributions give you
the ability to improve performance

* Cons
— Keep track of your rejections

— Variance of computed quantities can be
exceedingly high

Importance Sampling

MH samples can be highly correlated -> high
variance of MC estimates of expectations

Importance sampling is a technique for
reducing variance (albeit by increasing bias)
Intuition

— Rather than rejecting bad samples, down-weight
them appropriately

Benefits
— Lower variance

— Biased, but still consistent
— Estimate of Z

Importance Sampling

* Given p(x) = %
where Z = Z u(X)
xXeX

e \AlIn Aaoafina tha iimnArmalivad wainht+

Importance Sampling

* Given p(x) = % and importance digf)
where Z = Z u(x) p(x) >0 = ¢(x) >0
xXeX

e \AlIn Aaoafina tha iimnArmalivad wainht+

Importance Sampling

* Given p(x) = % and importance digf)
where Z = Z u(x) p(x) >0 = ¢(x) >0
xXeX

* We define the unnormalized weight

function
w(x) = —=

Importance Sampling

* Given p(x) = % and importance digf)
where Z = Z u(x) p(x) >0 = ¢(x) >0
xXeX

* We define the unnormalized weight

function
w(x) = —=

e We can now write

Z=> w(x)qx)

xEeX

Importance Sampling
Z = wx)q(x)

xeX
Notice that this has the form of an expected value
of w(x) under q:
Z = Eq yw(x)

Importance Sampling
Z = wx)q(x)

xecX

Notice that this has the form of an expected value
of w(x) under q:
Z = Eq yw(x)

We can replace this with a Monte Carlo estimate
7 = Eg%c)jw(x)

L
7 (2)
7 = ;:1 w(x'")

Importance Sampling

N

A 1 .
7 = ~ Zw(x(z))

1=1
This lets us derive the following approximation:

Importance Sampling

1 N
7 _ (%)
7 = ~ Zz:;w(x)
This lets us derive the following approximation:
N ~

ﬁ(X) _ i Z w(X)ZQ(X)

Intuitively, we have reweighted each sample
x() from q(x) with an importance weight

w(x D)
Z;’Vzl w(x))

Importance Sampling

IS Expectations are defined straightforwardly as

N | (1)]
1S)] — w(x'") ()
() Lf (X)] ; SV (X(j))f()_

Importance Sampling

* You can show

—That t
—That t

— lhat t

ne
ne

ne

S estimator is biased
S estimator is consistent
S estimator obeys a central limit

theorem with asymptotic variance

—Z

P ~ By f(x)]

— That the IS estlmator is more efficient than
rejection sampling

Particle Filtering

 Particle filtering is a special kind of
importance sampling

— It creates proposal distributions by conditioning
only on the past and current observations

— Each “particle” is a single sample that is built up
progressively across time
« This looks a lot like beam search exceﬁt you sample a
single decision at each time step and then discard
anything else
— As time progresses, you figure out that some
particles have a bad importance weight and others
are good

« Key idea: throw out low-weight particles and duplicate
high weight particles

Summary

* Monte Carlo techniques are a huge field of
research

— This is a survey of the important ones that
are used in structured prediction

* We will return to these methods when we
talk about Bayesian unsupervised learning

