Probability Distributions on Structured Objects

September 17, 2013
Reminder

• HW1 is due at 11:59pm tonight

• There was some ambiguity in this assignment
• The TAs gave a lot of help, but in general, learning to work from incomplete specs is important
Probability Outline

• Why probability?
• Probability review
• Multinomials vs. exponential parameterization
• Locally vs. globally normalized models & partition functions
• Examples
Why Probability?

• Probability formalizes
 – The concept of models
 – The concept of data
 – The concept of learning
 – The concept of prediction (inference)

Probability is expectation founded upon partial knowledge.
Why Probability?

• What might we have partial knowledge about?
 – The state of the world (test data)
 – The reliability of our training data
 – The correctness of our model
 – The values of our parameters

\[p(x \mid \text{partial knowledge}) \]
What is a Probability?

- **Limiting (relative) frequency of events**
 - in repeated (identical) experiments
- **Degree of belief**
 - Subjective conception
 - 40% chance of rain tomorrow in Pittsburgh
- **Viewpoint affects**
 - interpretation
 - **not** rules of probability calculus themselves
Discrete Distributions

Discrete distribution: Ω is *finite* or *countable*, but no bigger
Discrete Distributions

\[\forall x \in \Omega, \quad f(x) \in [0, 1] \]

\[\sum_{x \in \Omega} f(x) = 1 \]

An **event** is a subset (maybe one element) of the sample space, \(E \subseteq \Omega \)

\[P(E) = \sum_{x \in E} f(x) \]
Random Variables

A random variable is a function from a random event from a set of possible outcomes Ω and a probability distribution ρ, a function from outcomes to probabilities.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$X(\omega) = \omega$$

$$\rho_X(x) = \begin{cases} \frac{1}{6} & \text{if } x = 1, 2, 3, 4, 5, 6 \\ 0 & \text{otherwise} \end{cases}$$
Random Variables

A random variable is a function from a random event from a set of possible outcomes \(\Omega \) and a probability distribution \(\rho \), a function from outcomes to probabilities.

\[
\Omega = \{1, 2, 3, 4, 5, 6\}
\]

\[
Y(\omega) = \begin{cases}
0 & \text{if } \omega \in \{2, 4, 6\} \\
1 & \text{otherwise}
\end{cases}
\]

\[
\rho_Y(y) = \begin{cases}
\frac{1}{2} & \text{if } y = 0, 1 \\
0 & \text{otherwise}
\end{cases}
\]
Sampling Notation

\[x = 4 \times z + 1.7 \]
Sampling Notation

\[x = 4 \times z + 1.7 \]

\[y \sim \text{Distribution}(\theta) \]
Sampling Notation

\[x = 4 \times z + 1.7 \]

\[y \sim \text{Distribution}(\theta) \]

\[y' = y \times x \]

Random variable
Joint Probability

- Probability over multiple event types
- Tool for reasoning about dependent (correlated) events

A **joint probability distribution** is a probability distribution over r.v.'s with the following form:

\[
Z = \begin{bmatrix} X(\omega) \\ Y(\omega) \end{bmatrix}
\]

\[
\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = 1 \quad \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) \geq 0 \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}
\]
Joint Probability

- Probability over multiple event types
- Tool for reasoning about dependent (correlated) events

A joint probability distribution is a probability distribution over r.v.’s with the following form:

\[Z = \begin{bmatrix} X(\omega) \\ Y(\omega) \end{bmatrix} \]

\[\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = 1 \quad \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) \geq 0 \quad \forall x \in \mathcal{X}, y \in \mathcal{Y} \]
Joint Probability

- Probability over multiple event types
- Tool for reasoning about dependent (correlated) events

A joint probability distribution is a probability distribution over r.v.’s with the following form:

$$Z = \begin{bmatrix} X(\omega) \\ Y(\omega) \end{bmatrix}$$

$$\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = 1$$

$$\rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) \geq 0 \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}$$
Joint Probability

- Probability over multiple event types
- Tool for reasoning about dependent (correlated) events

A **joint probability distribution** is a probability distribution over r.v.’s with the following form:

$$Z = \begin{bmatrix} X(\omega) \\ Y(\omega) \end{bmatrix}$$

For any $x \in \mathcal{X}, y \in \mathcal{Y}$:

$$\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \rho_Z \begin{bmatrix} x \\ y \end{bmatrix} = 1$$

$$\rho_Z \begin{bmatrix} x \\ y \end{bmatrix} \geq 0 \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}$$

DNA sequence

Proteins
\[\Omega = \{1, 2, 3, 4, 5, 6\} \]

\[X(\omega) = \omega \]
\[\Omega = \{1, 2, 3, 4, 5, 6\} \]

\[X(\omega) = \omega \]

\[\Omega = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), \]
\[(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), \]
\[(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), \]
\[(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), \]
\[(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), \]
\[(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), \} \]

\[X(\omega) = \omega_1 \quad Y(\omega) = \omega_2 \]

\[\rho_{X,Y}(x, y) = \begin{cases} \frac{1}{36} & \text{if } (x, y) \in \Omega \\ 0 & \text{otherwise} \end{cases} \]
\[\Omega = \{1, 2, 3, 4, 5, 6\} \]

\[X(\omega) = \omega \]

\[\Omega = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), \\
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), \\
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), \\
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), \\
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), \\
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), \} \]

\[X(\omega) = \omega_1 \quad Y(\omega) = \omega_2 \]

\[\rho_{X,Y}(x, y) = \begin{cases} \frac{x+y}{252} & \text{if } (x, y) \in \Omega \\ 0 & \text{otherwise} \end{cases} \]
Marginal Probability

\[p(X = x, Y = y) = \rho_{X,Y}(x, y) \]

\[p(X = x) = \sum_{y' \in Y} p(X = x, Y = y') \]

\[p(Y = y) = \sum_{x' \in X} p(X = x', Y = y) \]

\[\Omega = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\} \]

\[p(X = 4) = \sum_{y' \in [1,6]} p(X = 4, Y = y') \]

\[p(Y = 3) = \sum_{x' \in [1,6]} p(X = x', Y = 3) \]
Marginal Probability

Sample space

- (NN, cat)
- (NN, sloth)
- (NN, book)
- (JJ, fuzzy)
- (VB, book)
- (RB, quickly)
Marginal Probability

Sample space

\[p(t = \text{NN}) \]

- (NN, ·)
- (JJ, fuzzy)
- (VB, book)
- (RB, quickly)

\[(\text{NN}, \cdot) \]
Marginal Probability

Sample space

\[p(w = \text{book}) \]
Marginal Probability

Sample space

- (NN, cat)
- (NN, sloth)
- (NN, book)
- (JJ, fuzzy)
- (VB, book)
- (RB, quickly)
Marginal Probabilities

• In a joint model of word and tag sequences $p(w,t)$
 – The probability of a word sequence $p(w)$
 – The probability of a tag sequence $p(t)$
 – The probability of a word sequence with the word “cat” somewhere in it
 – The probability of a tag sequence containing three verbs in a row
Conditional Probability

The **conditional probability** is defined as follows:

\[
p(X = x \mid Y = y) = \frac{p(X = x, Y = y)}{p(Y = y)} = \frac{\text{joint probability}}{\text{marginal}}
\]

This assumes \(p(Y = y) \neq 0 \)

We can construct joint probability distributions out of conditional distributions:

\[
p(x \mid y)p(y) = p(x, y) = p(y \mid x)p(x)
\]
Conditional Probability Distributions

The **conditional probability distribution** of a variable X given a variable Y has the following properties:

\[\forall y \in Y, \sum_{x \in X} p(X = x \mid Y = y) = 1 \]
Conditional Probability

Sample space

- (NN, cat)
- (NN, sloth)
- (NN, book)
- (JJ, fuzzy)
- (VB, book)
- (RB, quickly)
Conditional Probability

Sample space

- (NN, cat)
- (NN, sloth)
- (NN, book)
- (JJ, fuzzy)
- (VB, book)
- (RB, quickly)

\[p(\cdot | w = \text{book}) \]
Conditional Probabilities

• In a joint model of word and tag sequences $p(w,t)$
 – The probability of a tag sequence given a word sequence $p(t \mid w)$
 – The probability of a word sequence given a tag sequence $p(w \mid t)$
Joint and Marginal Probabilities

• In a joint model of word and tag sequences $p(w, t)$

 – The probability that the 3rd tag is VERB, given $w = “\text{Time flies like an arrow}”$
 $p(t_3 = \text{VERB} \mid w = \text{Time flies like an arrow})$

 – The probability that the 3rd word is like, given $w = “\text{Time flies _____ an arrow}”$, $t_3 = \text{VERB}$
 $p(t_3 = \text{like} \mid w = \text{Time flies _____ an arrow, } t_3 = \text{VERB})$
Chain Rule

\[p(a, b, c, d, \ldots) = p(a) \times p(b \mid a) \times p(c \mid a, b) \times p(d \mid a, b, c) \times \cdots \]
Bayes Rule

\[p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} \]

Posterior \quad Likelihood \quad Prior

Evidence

\[= \frac{p(y \mid x)p(x)}{\sum_{x'} p(y \mid x')p(x')} \]
Independence

Two r.v.’s are **independent** iff

\[p(X = x, Y = y) = p(X = x) \times p(Y = y) \]

Equivalently (prove with def. of cond. prob.)

\[p(X = x \mid Y = y) = p(X = x) \]

Alternatively,

\[p(Y = y \mid X = x) = p(Y = y) \]
Conditional Independence

Two equivalent statements of conditional independence:
\[p(a, c \mid b) = p(a \mid b)p(c \mid b) \]
and:
\[p(a \mid b, c) = p(a \mid b) \]

“If I know B, then C doesn’t tell me about A”
\[p(a \mid b, c) = p(a \mid b) \]
\[p(a, b, c) = p(a \mid b, c)p(b, c) \]
\[= p(a \mid b, c)p(b \mid c)p(c) \]
Conditional Independence

Two equivalent statements of conditional independence:

\[p(a, c \mid b) = p(a \mid b)p(c \mid b) \]

and:

\[p(a \mid b, c) = p(a \mid b) \]

“If I know B, then C doesn’t tell me about A”

\[p(a \mid b, c) = p(a \mid b) \]

\[p(a, b, c) = p(a \mid b, c)p(b, c) \]

\[= p(a \mid b, c)p(b \mid c)p(c) \]

\[= p(a \mid b)p(b \mid c)p(c) \]
Conditional Independence

• Useful thing to assume when designing models
 – Limit the variables that influence distributions
 – Classical example: Markov assumption

• Questions
 – Does conditional independence imply marginal independence?
 – Does marginal independence imply conditional independence?
Expected Values

\[\mathbb{E}_{p(X=x)} [f(x)] = \sum_{x \in \mathcal{X}} p(X = x) \times f(x) \]

Some special expectations:

\[p(X = y) = \mathbb{E}_{p(X=x)} [\mathbb{I}_{x=y}] \]

\[H(X) = \mathbb{E}_{p(X=x)} [- \log_2 x] \]
Categorical (Multinomial) Distributions

- Generalized model of a distribution to \(k \) dimensions
- Option 1: Parameters lie on the **\(k \)-simplex**

\[
\Delta^k = \left\{ (\theta_1, \theta_2, \ldots, \theta_k) \mid \sum_{i=1}^{k} \theta_i = 1 \land \theta_i \geq 0 \ \forall \ i \in [0, k] \right\}
\]
Log-linear Parameterization

\[p(x) = \frac{\exp \mathbf{w}^\top f(x)}{Z} \]

where \(Z = \sum_{x' \in X} \exp \mathbf{w}^\top f(x) \)

Assumption: \(Z \) converges
Categorical (Multinomial) Distributions

• “Naïve” parameterization
 – k outcomes, k(-1) independent parameters
 – Model as tables of (conditional) probabilities
 – MLE estimation (given fully observed data) is easy

• Log-linear parameterization
 – k outcomes, n, possibly overlapping parameters
 • Share statistical strength across “related” events
 • How are elements related? Depends how you define f
Locally Normalized Models

• Structure as the result of a **discrete time branching process**
 – Start in a known initial state, carry out stochastic steps (parameterized using multinomials) until some termination condition is met
 – Steps are (conditionally) independent of one another: probabilities multiply
 – *Total probability is the probability of the steps*

• Usually for joint (generative) models
 – not always though (see Appendix D.2)
S

1.0 \times p(NP \; VP \mid S)
1.0 \times p(\text{NP VP | S})
\times p(\text{JJ NN | NP})
\[1.0 \times p(\text{NP VP} \mid S) \times p(\text{JJ NN} \mid \text{NP}) \times p(\text{V} \mid \text{VP}) \]
1.0 x p(NP VP | S)
 x p(JJ NN | NP)
 x p(V | VP)
 x p(\textit{angry} | JJ)
angry dogs

1.0 x p(NP VP | S)
x p(JJ NN | NP)
x p(V | VP)
x p(\textit{angry} | JJ)
x p(\textit{dogs} | NN)
\[p(\tau, x) = \prod_{r \in G} p(r | G)^{f(r \in \tau)} \]
1.0 \times p(\text{NP VP} \mid S) \\
\times p(\text{JJ NN} \mid \text{NP}) \\
\times p(\text{V} \mid \text{VP}) \\
\times p(\text{angry} \mid \text{JJ}) \\
\times p(\text{dogs} \mid \text{NN}) \\
\times p(\text{bark} \mid \text{V})
Here’s an alternative way of building a tree and string:

S 1.0
Here’s an alternative way of building a tree and string:

S

$1.0 \times p(2 \text{ kids} \mid S)$
Here’s an alternative way of building a tree and string:

\[1.0 \times p(2 \text{ kids} \mid S) \times p(NP \mid S, n=1, \text{total}=2) \]
Here’s an alternative way of building a tree and string:

1.0 \times p(2 \text{ kids} \mid S) \\
\times p(NP \mid S, n=1, \text{total}=2) \\
\times p(VP \mid S, n=2, \text{total}=2)
Here’s an alternative way of building a tree and string:

1.0 x p(2 kids | S)
 x p(NP | S, n=1, total=2)
 x p(VP | S, n=2, total=2)
 x p(1 kid | VP)
Here’s an alternative way of building a tree and string:

\[
\begin{align*}
S & \quad 1.0 \times p(2 \text{ kids } | \ S) \\
& \quad \times p(\text{NP } | \ S, n=1, \text{ total}=2) \\
& \quad \times p(\text{VP } | \ S, n=2, \text{ total}=2) \\
& \quad \times p(1 \text{ kid } | \ VP)
\end{align*}
\]
Here's an alternative way of building a tree and string:
Here’s an alternative way of building a tree and string:

```
1.0 x p(2 kids | S)
x p(NP | S, n=1, total=2)
x p(VP | S, n=2, total=2)
x p(1 kid | VP)
x p(1 kid | VP, S)
```
Choosing a Model

• Independence is a property of distributions
 – Look at distributions in the wild, figure out what independence assumptions hold

• Dependence makes modeling more expensive
 – How big does your CKY chart have to be if you have “grandparent” annotation?
Parameterization

- For each step in the branching process
 - We have a multinomial distribution
 - We can use independent parameters (on simplex)
 - We can use log-linear models
 - “Locally normalized model” (cf. Appendix D.2)
 - Z is “local” to the decision being made
Globally Normalized Models

• Extension of the exponential parameterization to structured output spaces

\[p(x) = \frac{\exp w^\top F(x)}{Z} \]

where \(Z = \sum_{x' \in \mathcal{X}} \exp w^\top F(x') \)
Conditional Random Fields

\[p(y \mid x) = \frac{\exp w^\top F(x)}{Z(x)} \]

\[Z(x) = \sum_{y' \in \mathcal{Y}_x} \exp w^\top F(x) \]
Conditional Random Fields

\[p(y \mid x) = \frac{\exp w^\top F(x, y)}{Z(x)} \]

\[Z(x) = \sum_{y' \in \mathcal{Y}_x} \exp w^\top F(x, y') \]

Decoding is nice:

\[y^* = \arg \max_{y \in \mathcal{Y}_x} \frac{\exp w^\top F(x, y)}{Z(x)} \]

\[= \arg \max_{y \in \mathcal{Y}_x} \exp w^\top F(x, y) \]

\[= \arg \max_{y \in \mathcal{Y}_x} w^\top F(x, y) \]
Conditional Random Fields

\[F(x, y) = \sum_{C \in G} f(C) \]
Comparison of Feature-Based Models

• Locally Normalized Models
 – Good joint models
 – Easy to training
 – Downside: decoding can be expensive

• Globally Normalized Models
 – Very popular conditional models (CRFs)
 – Challenge: computing Z / training
 – Advantage: decoding can be cheap