Experimentation

October 27, 2015
Generalization

• We want to know how a predictor h will perform in general.
• What do you mean in general?
 – “Average” behavior for all possible inputs (e.g., sentences, DNA sequences, corpora, ...), even the ones we don’t have in our training/test data

$$\mathbb{E}_{p(x,y)} \text{cost}(h(x), y)$$
Experimentation

• That expectation can’t be computed
 – Rather than looking at all possible inputs (maybe infinite! Maybe huge!), look at a representative sample of inputs
 – Make inferences from these experiments about the rest of the population
 – Rough idea: if we do well on a representative sample, we will do well on the whole population

• Mathematics can show provide conditions under which these inferences will be true with high probability
Standard Methodology

• We want to compare at two predictors h and h' that differ in a well-defined way
 – Data used to train them
 – Algorithm used to train them
 – Training objective (e.g., conditional vs. joint)
 – Feature set used
 – Inference method (e.g., exact vs. approximate)
 – Decoding objective (e.g., MAP vs. MBR)
Which predictor is better?

That is, we would like to know whether:

$$\mathbb{E}_{p(x,y)}[\text{cost} \ (h(x), y)] < \mathbb{E}_{p(x,y)}[\text{cost} \ (h'(x), y)]$$

Unfortunately, we cannot generally know this! 😞
Which predictor is better?

That is, we would like to know whether:

\[
\mathbb{E}_{p(x,y)}[\text{cost} \ (h(x), \ y)] < \mathbb{E}_{p(x,y)}[\text{cost} \ (h'(x), \ y)]
\]

Unfortunately, we cannot generally know this! 😞

But we can know the following: 😊

Test set: \(\mathcal{T} = \{ x_i^*, y_i^* \}_{i=1}^{N^*} \)

\[
\frac{1}{N^*} \sum_{i=1}^{N^*} \text{cost} \ (h(x_i^*), y_i^*) < \frac{1}{N^*} \sum_{i=1}^{N^*} \text{cost} \ (h'(x_i^*), y_i^*)
\]
Other Scenarios

• We may want to compare more than two predictors
• We may want to compare more than one cost function
• We may be working with cost functions that are defined at the corpus level
 – F-measure, precision, recall, BLEU, ROUGE, etc.
Held-Out Test Sets

• **Number one rule:** Keep your training data out of your test data
• If this sounds simple, it is anything but
 – Selecting hyperparameters by looking at the test set scores
 – Every year *many* (most?) papers are published that violate this!
• **Standard recipe**
 – *Training data* (possibly further subdivided into training & tuning)
 – Held-out *development data* [use while developing system]
 – Blind *test data* [for publication only]
Held-Out Test Sets

• Years of experimentation with “blind” test sets means they aren’t “blind” any longer!
• Strategies for dealing with this
 – Periodic creation of new test community sets
 – Fix all parameters of development data, report on held-out test data [publication bias]
 – Cross-validation

• I’ll say it again: Using held-out test data is the single most important thing you can do to ensure your experiments give generalization insight
Generalization: Cross Validation

- Sample train/dev/test data from D
- k-fold cross validation
 - Select k train/dev/test splits
- In the limit: k=N, “leave-one-out” CV
 - If you have N training instances, run N experiments training on N-1 instances
- Pros
 - More statistical power
 - Better use of limited data resources
- Cons
 - Computationally expensive
 - Not terribly common in structured prediction
Oracles and Upper Bounds

• What is the best possible performance knowing something about the test set?
 – Up to, and including, the test set!

• Examples
 – Tuning hyperparameters or parameters on the test set
 – Using gold standard parse trees or NER labels for a downstream information extraction task

• Answers a different question than generalization: does my model have adequate “capacity”?
Back to Generalization

- Is held-out data enough?
- How many samples do we need to make reliable inferences?
 - If you need to detect big differences, you need fewer samples
 - If you need to detect small differences, you need big samples
 - If you do lots of similar experiments looking for an effect, you’re more likely to hit one “by chance”- can we control for this (false discovery)

- This brings us to...
Statistical Hypothesis Testing

- **Statistical predictors != statistical evaluation**
 - You can do statistical evaluation of non-statistical predictors!
- **Hypothesis testing in one sentence:** How likely is that the behavior we’re seeing is due to chance?
- **Hypothesis testing is not magical**
 - p-values are not the probability your claim is wrong
 - At best, you find out what is the probability some pattern of results is due to chance
 - If the your results unlikely due to chance, this does not mean the hypothesis you formulated was true; converse is also true
Statistical Hypothesis Testing

• Formulate a null hypothesis H_0
 – Skeptical perspective: e.g., two experimental scenarios are the same
• Set a threshold with which we reject the null hypothesis, usually
 $\alpha \in \{0.05, 0.01, 0.001\}$
• What is the probability of the experimental observations, assuming the null hypothesis?
 $p < \alpha$ H_0
 – If $p < \alpha$, then we can reject H_0
Parameters & Statistics

\[u_i \sim U_i, \quad i = [1, N] \]
\[v_i = v(u_i), \quad (\text{ie.}, \quad v_i \sim V) \]

The mean (a parameter) is not a random variable; it is a real number.

\[\mu_V = \mathbb{E}_{p(u)}[v(u)] = \int v(u) \cdot p(u) du \]

The sample mean (a statistic) is a function of \(u \), and therefore is a random variable.

\[\hat{\mu}_V = \frac{1}{N} \sum_{i=1}^{N} v_i \]
Sampling Distribution

• A statistic, e.g. our sample mean

\[\hat{\mu}_V = \frac{1}{N} \sum_{i=1}^{N} v_i \]

is a random variable.

• What distribution is it drawn from, i.e. can we say something about the following?

\[\hat{\mu}_V \sim \text{Distribution}(\theta) \]
Sampling Distribution

• Under some weak assumptions, a central limit theorem tells us
 \[\hat{\mu}_V \sim \mathcal{N} \left(\mu_V, \frac{\sigma^2_V}{N} \right) \]

• This is an awesome result! As \(N \) gets bigger, the expected deviation from the parameter of interest drops.
Standard Error

• What is the standard deviation of the sample mean?

\[\sigma_{\hat{\mu}_V} \] parameter of sampling distribution

\[\sigma_{\mu_V} \] parameter of global population

\[\sigma_{\hat{\mu}_V} = \frac{\sigma_V}{\sqrt{N}} \]
Standard Error

- What is the standard deviation of the sample mean?

\[\sigma_V \text{ parameter of global population} \]

\[\sigma_{\hat{\mu}_V} \text{ parameter of sampling distribution} \]

\[\sigma_{\hat{\mu}_V} = \frac{\sigma_V}{\sqrt{N}} \]

\[\hat{\sigma}_V \text{ statistic: the sample standard deviation} \]

\[\hat{\sigma}_V = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (u_i - \hat{\mu}_i)^2} \]
Standard Error

- We can now state the standard error

\[\hat{\sigma}_{\mu_V} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (u_i - \hat{\mu}_i)^2} \frac{1}{\sqrt{N}} \]

- This idea of replacing the true distribution (which we cannot know) with samples is the same thing we did with Monte Carlo techniques.
Standard Deviations
Other Parameters/Statistics

• Any **generalized mean:**
 – min, median, ..., max

• Proportions
 – proportion of a population for which property P holds

• Other functions
 – BLEU score, F-measure, word error rate...

• Except for proportions, these statistics don’t have a closed form of the standard error
Bootstrap (Efron, 1979)

- Monte Carlo technique to estimate standard error of some statistic
- We have a sample of N draws from U

$$\mathbf{u} = (u_1, u_2, \ldots, u_N)$$

- For $i=1$ to B, resample N times from the empirical distribution of \mathbf{u}

$$\mathbf{u}^{(i)} = (u^{(i)}_1, u^{(i)}_2, \ldots, u^{(i)}_N)$$
• From the sequence of bootstrap samples estimate the standard error

\[
\hat{\sigma}_\theta^{(boot)} = \sqrt{\frac{1}{B - 1} \sum_{i=1}^{B} \left(\hat{\theta}_{V,u(i)} - \frac{1}{B} \sum_{j=1}^{B} \hat{\theta}_{V,u(i)} \right)^2}
\]

\[
= \sqrt{\sum_{i=1}^{B} \left(\hat{\theta}_{V,u(i)} - \frac{1}{B} \sum_{j=1}^{B} \hat{\theta}_{V,u(i)} \right)^2}
\]

\[
\sqrt{B - 1}
\]

\[
\sigma_\theta \approx \hat{\sigma}_\theta \approx \hat{\sigma}_\theta^{(boot)}
\]

(When \(\theta_V = \mu_V \),

\[
\hat{\sigma}_V = \sigma_V / \sqrt{N}
\]