Natural Language Parsing with Context-Free Grammars

SPFLODD

September 10, 2013
What is “Parsing”?

• General answer: analyze text with respect to some theory.

• Usually it means **syntactic analysis**.

• **Syntax**: branch of linguistics dealing with how words and phrases are *ordered* to create well-formed sentences.

 – As in programming languages, syntax is understood as relevant to the mapping from strings to their meanings.

• Different theories of syntax → different kinds of parsing.

 – Today we’ll talk about context-free syntax

 – Thursday we’ll talk about dependency syntax
Formal Stuff First
Context-Free Grammars

- Chomsky hierarchy:
- Informally, CFGs can represent center-embedding, which regular grammars can’t.
- Classic argument from Chomsky (1956): NL is not regular.
 - Pumping lemma-type argument on (the Noun)^n (Verb-past)^n-1 VP
Context-Free Grammars

• Alphabet Σ
• Set of variables N
• Start symbol $S \in N$
• Rewrite rules: $X \rightarrow \alpha$, where $X \in N$ and $\alpha \in (N \cup \Sigma)^*$

• CNF: Assume $\alpha \in N^2 \cup \Sigma$. Can always convert to CNF.

• Grammars for NL usually have nonterminals like S, NP, VP, PP, and preterminals like N, V, Adj, Adv, ...
 – Tokens of labeled spans are called *constituents*.
Probabilistic Context-Free Grammar

• Associate a multinomial distribution over right-hand sides to the set of rules sharing a left-hand side.
 – Conditional probability of “children” given “parent.”

• Generative story:
 1. Instantiate the start symbol S as a single red node.
 2. While there are any red symbols:
 1. Choose a red node X and color it white.
 2. Draw \(\alpha = \langle \alpha_1, \alpha_2, \ldots, \alpha_k \rangle \) according to \(p(*) \mid X \).
 3. Add \(\langle \alpha_1, \alpha_2, \ldots, \alpha_k \rangle \) to the tree as the sequence of children of the node X you selected.
 4. For any \(\alpha_i \) that are nonterminals, color them red; color the terminals white.
Like “Branching” Bayesian Networks

• Everything in a subtree is conditionally independent of everything else given its parent.
• A node’s label is conditionally independent of its descendents given its children.

• But not easy to capture in a Bayesian network:
 – variable length derivations of the grammar
 – joint model of tree structure and labels
 – direct dependency between any span’s label (or lack of label) and any potential parent, child, or sibling
HMMs are Special PCFGs

• Alphabet Σ
• $N = \text{HMM states } Q$
• Start state q_0
• Rules

 $q \rightarrow x \ q' \text{ with probability } p_{\text{emit}}(x \mid q) \ p_{\text{trans}}(q' \mid q)$

 $q \rightarrow \varepsilon \text{ with probability } p_{\text{trans}}(\text{stop} \mid q)$
Weighted Context-Free Grammar

• Don’t need a generative story; just assign weights to rules.
 – Can featurize

• Like a Markov network, but representing a WCFG as a MN is not elegant.
Parsing Natural Language
Penn Treebank (Marcus et al., 1993)

• A million words (40K sentences) of *Wall Street Journal* text (late 1980s).
 – This is important to remember!
• Parsed by experts; consensus parse for each sentence was published.
• The structure is basically what you’d expect from a PCFG.
 – Tends to be “flat” where there’s controversy.
 – Some “traces” for extraposed elements.
• Attempts to be theory-neutral, probably more accurate to say that it represents its own syntactic theory.
• Many other treebanks now available in other languages.
Example

(S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,)
)
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29)))
 (. .))
)
)
Example

(S
 (NP-SBJ-1
 (NP (NNP Rudolph) (NNP Agnew))
 (, ,)
)
 (UCP
 (ADJP
 (NP (CD 55) (NNS years))
 (JJ old))
 (CC and)
 (NP
 (NP (JJ former) (NN chairman))
 (PP (IN of)
 (NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC))))
 (, ,)
)
 (VP (VBD was)
 (VP (VBN named)
 (S
 (NP-SBJ (-NONE- *-1))
 (NP-PRD
 (NP (DT a) (JJ nonexecutive) (NN director))
 (PP (IN of)
 (NP (DT this) (JJ British) (JJ industrial) (NN conglomerate))))
 (, .))))
Evaluation

• Take a sentence from the test set.
• Use your parser to propose a hypothesis parse.
• Treebank gives you the correct parse.
• Precision and recall on labeled (or unlabeled) constituents.
 – Also, average number of crossing brackets (compared to correct parses) in your hypotheses.
• The training/development/test split has been held constant for a long time; possibly a cause for concern.
Basic Algorithms
CFG Parsing

• Given a treebank of reasonable size, the grammar we extract will be ambiguous.
 – Algorithms used for programming languages will not work.

• The most common approaches are based on two dynamic programming algorithms:
 – Cocke-Kasami-Younger (CKY) algorithm
 – Earley’s algorithm

• Originally these were not weighted, but today we assume rules have weights.
CKY: Weighted Logic Program

- \text{constit}(X, I, I) \ \text{max} = \text{word}(W, I) \times \text{unary}(X, W).
- \text{constit}(X, I, K) \ \text{max} = \text{constit}(Y, I, J)
 \times \text{constit}(Z, J+1, K)
 \times \text{binary}(X, Y, Z).
- \text{goal} \ \text{max} = \text{constit}(S, 1, N)
 \times \text{length}(N) \times \text{startsymbol}(S).
Visualizing Probabilistic CKY

\[X \rightarrow w_i \]

\[X \rightarrow Y Z \]

\[X \rightarrow w_i \]

\[X \rightarrow Y Z \]

\[X \rightarrow Y Z \]

\[X \rightarrow Y Z \]

\[X \rightarrow w_i \]

\[X \rightarrow Y Z \]
Visualizing Probabilistic CKY
Visualizing Probabilistic CKY

How do we fill in $C(1,2)$?
How do we fill in $C(1,2)$?

Put together $C(1,1)$ and $C(2,2)$.

Visualizing Probabilistic CKY
Visualizing Probabilistic CKY

How do we fill in $C(1,3)$?
Visualizing Probabilistic CKY

How do we fill in \(C(1,3) \)?

One way ...
How do we fill in $C(1,3)$?

One way ...
Another way.
Visualizing Probabilistic CKY

How do we fill in $C(1, n)$?
Visualizing Probabilistic CKY

How do we fill in $C(1,n)$?

$n - 1$ ways!
Visualizing Probabilistic CKY

$O(|N|n^2)$ cells to fill
$O(|N|^2 n)$ ways to fill each
Earley’s Algorithm

need(X, I) max = constit(_/Xα, _, I).
need(S, 0) max = \text{startsymbol}(S).
constit(X/α, I, I) max = \text{rewrite}(X, α) \text{ whenever } need(X, I).
\text{predict}
constit(X/α, I, J+1) max = constit(X/W α, I, J) \times \text{word}(W, J + 1).
\text{scan}
constit(X/α, I, K) max = constit(X/Yα, I, J) \times constit(Y/ε, J, K).
\text{complete}
goal max = constit(S/ε, 0, N) \times \text{length}(N) \times \text{startsymbol}(S).
Visualizing Probabilistic Earley’s
CKY vs. Earley’s

• Both $O(n^3)$ runtime, $O(n^2)$ space
• Neither requires weights to be probabilities, just like Viterbi.
• Earley’s doesn’t require the grammar to be in CNF
• Proof structures in Earley’s “move” left-to-right; CKY “moves” bottom-to-top.
• Earley’s ≈ on-the-fly binarization + CKY
• If you’re into logic programming, there are interesting ways to derive each of these from the other.
 Parsing in Reality

• Generally speaking, few industrial-strength parsers actually call CKY or Earley’s.

• Extensions to the basic CFG model (next topic) make reduction to CFG expensive.

• Standard techniques:
 – Beam search
 – Agenda-based approximations with pruning and/or A*
 – “Coarse-to-fine”
 – “Cube pruning” that makes use of local k-best lists (Huang and Chiang, 2005)
 – Shift-reduce-style algorithms with search
Better CFGs
Training Parsers In Practice

• Transformations on trees
 • Some of these are generally taken to be crucial
 • Some are widely debated
 • Lately, people have started learning these transformations
• Smoothing is crucial; the grammars that result from transformed trees have lots more rules and therefore more parameters.
from Johnson (1998)
Parent Annotation

NP \rightarrow^p NP PP

NP \rightarrow^q NP PP PP
Parent Annotation

\[\text{NP}^{\text{VP}} \rightarrow \rho \text{NP}^{\text{NP}} \text{PP}^{\text{NP}} \]

\[\text{NP}^{\text{NP}} \rightarrow \rho \text{NP}^{\text{NP}} \text{PP}^{\text{NP}} \]

\[\text{NP}^{\text{VP}} \rightarrow q \text{NP}^{\text{NP}} \text{PP}^{\text{NP}} \text{PP}^{\text{NP}} \]
Parent Annotation

• Another way to think about it ...

• Before:
 \[p(\text{tree}) = \prod_{n \in \text{nodes(tree)}} \rho(\text{childsequence}(n) \mid n) \]

• Now:
 \[p(\text{tree}) = \prod_{n \in \text{nodes(tree)}} \rho(\text{childsequence}(n) \mid n, \text{parent}(n)) \]

• This could conceivably **help** performance (weaker independence assumptions)

• This could conceivably **hurt** performance (data sparseness)
Parent Annotation

• From Johnson (1998):
 • PCFG from WSJ Treebank: 14,962 rules
 • Of those, 1,327 would *always* be subsumed!
 • After parent annotation: 22,773 rules
 • Only 965 would always be subsumed!
• Recall 69.7% → 79.2%; precision 73.5% → 80.0%
• Trick: check for subsumed rules, remove them from the grammar → faster parsing.
Head Annotation

• “I love all my children, but one of them is special.”

\[
S \rightarrow NP \ VP
\]

\[
VP \rightarrow \text{VBD} \ NP
\]

\[
NP \rightarrow DT \ NNS \ PP
\]

• Heads not in the Treebank.
• Usually people use **deterministic head rules** (Magerman, 1995).
Lexicalization

• Every nonterminal node is annotated with a word from its yield; such that
 • \(\text{lex}(n) = \text{lex}(\text{head}(n)) \)
Lexicalization

• Every nonterminal node is annotated with a word from its yield; such that
 • \(\text{lex}(n) = \text{lex}(\text{head}(n)) \)

• What might this allow?
• What might we worry about?
Algorithms

• These “decorations” affect our parser’s runtime.
 – Why?
 – Any ideas about how to get around this?
Some Famous Parsers
Collins Model 1 (1997)

- Trees are headed and lexicalized
 - What’s the difference?

- Huge number of rules!
 - \(VP_{saw} \rightarrow V_{saw} \ NP_{man} \ PP_{through} \)
 - \(VP_{saw} \rightarrow V_{saw} \ NP_{man} \ PP_{with} \)
 - \(VP_{saw} \rightarrow V_{saw} \ NP_{woman} \ PP_{through} \)
 - \(VP_{saw} \rightarrow V_{saw} \ NP_{man} \)

- Key: factor probabilities within rule.
Collins Model 1 (1997)

• Everything factors down to rules, then further. We’re given the parent nonterminal and head word.
Collins Model 1 (1997)

• Everything factors down to rules, then further. We’re given the parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.
Collins Model 1 (1997)

• Everything factors down to rules, then further. We’re given the parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.

• Generate a sequence of left children.
Collins Model 1 (1997)

• Everything factors down to rules, then further. We’re given the parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.

• Generate a sequence of left children.

\[
\text{VP}_{\text{saw}} \rightarrow \text{Adv}_{\text{somehow}} \rightarrow \text{V}_{\text{saw}}
\]
Collins Model 1 (1997)

• Everything factors down to rules, then further. We’re given the parent nonterminal and head word.
• Randomly generate the head child’s nonterminal.
• Generate a sequence of left children.
• Then right.
Collins Model 1 (1997)

• Everything factors down to rules, then further. We’re given the parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.

• Generate a sequence of left children.

• Then right.
Collins Model 1 (1997)

- Everything factors down to rules, then further. We’re given the parent nonterminal and head word.
- Randomly generate the head child’s nonterminal.
- Generate a sequence of left children.
- Then right.
Interesting twist: want to model the **distance** between head constituent and child constituent. How?
Collins Model 1 (1997)

- Interesting twist: want to model the distance between head constituent and child constituent. How?
- Depth-first recursion.
Collins Model 1 (1997)

• Interesting twist: want to model the **distance** between head constituent and child constituent. How?

• Depth-first recursion.

• Condition next child on features of the parent’s yield so far.

![Diagram of syntactic tree]

- **VP**: VP
 - **Adv**: Adv
 - **V**: V
 - **NP**: NP
 - **PP**: PP
 - **generate these ...**
 - **... before this**
Collins Model 1 (1997)

• Interesting twist: want to model the distance between head constituent and child constituent. How?

• Depth-first recursion.

• Condition next child on features of the parent’s yield so far.

\[
p(PP_{\text{with}} \mid VP_{\text{saw}}, \text{right, “the cat who liked milk”}) \approx p(PP_{\text{with}} \mid VP_{\text{saw}}, \text{right, length } > 0, +\text{verb})
\]

\[
p(L_n, u_n, L_{n-1}, u_{n-1}, \ldots, L_1, u_1, H, w, R_1, v_1, R_2, v_2, \ldots, R_m, v_m \mid P, w)
\]

\[
= p(H \mid P, w) \cdot \prod_{i=1}^{n} p(L_i, u_i \mid P, w, H, \text{left}, \Delta_i) \cdot p(\text{stop} \mid P, w, H, \text{left}, \Delta_{n+1}) \cdot \prod_{i=1}^{m} p(R_i, v_i \mid P, w, H, \text{right}, \Delta_i') \cdot p(\text{stop} \mid P, w, H, \text{right}, \Delta_{n+1}')
\]
Collins Models 2 and 3 (1997)

• Model 2: Complements, adjuncts and subcategorization frames
 – Treebank decoration: -C on specifiers and arguments
 – Probability model: first pick set of complements (side-wise), must ensure they are all generated
 – *the issue was a bill funding Congress*

• Model 3: Wh-movement and extraction
 – Treebank decoration: “gap feature”
 – Probability model: gap feature “passed around the tree,” must be “discharged” as a trace element.
 – *the store that IBM bought last week*
Other Points

• Unknown words at test time: any training word with count < 6 becomes UNK
• Smoothing: deleted interpolation
• Tagging is just part of parsing (not a separate stage)
• Markov order increased in special cases:
 – within base noun phrases (NPBs) - first order
 – conjunctions ("and") predicted together with second conjunct
 – punctuation (details in 2003 paper)
Practical Notes

• Collins parser is freely available
• Dan Bikel replicated the Collins parser cleanly in Java
 – Easier to re-train
 – Easier to plug-and-play with different options
 – Multilingual support
 – May be faster (with current Java) - I’m not sure
Charniak (1997) - in brief

- Generally similar to Collins
- Key differences:
 - Used an additional 30 million words of unparsed text in training
 - Rules not fully markovized: pick full nonterminal sequence, then lexicalize each child independently
Charniak (1997) - in brief

VP\textsubscript{saw}
Charniak (1997) - in brief

$$\text{VP}_{saw} \rightarrow \text{Adv} _ _ V _ _ \text{NP} _ _ \text{PP}$$
Charniak (1997) - in brief

\[p(\text{somehow I } \text{VP}_{\text{saw}}, \text{Adv}) \]
Charniak (1997) - in brief

\[p(\text{cat} \mid \text{VP}_{\text{saw}}, \text{NP}) \]
Charniak (1997) - in brief

\[p(\text{with | } \text{VP}_{\text{saw}}, \text{PP}) \]
Charniak (2000)

• Uses grandparents (Johnson ’98 transformation)
• Markovized children (like Collins)
• Bizarre probability model:
 — Smoothed estimates at many backoff levels
 — Multiply them together
 — “Maximum entropy inspired”
 — Kind of a product of experts (untrained)
Comparison

<table>
<thead>
<tr>
<th></th>
<th>labeled recall</th>
<th>labeled precision</th>
<th>average crossing brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>87.5</td>
<td>87.7</td>
<td>1.09</td>
</tr>
<tr>
<td>Model 2</td>
<td>88.1</td>
<td>88.3</td>
<td>1.06</td>
</tr>
<tr>
<td>Model 3</td>
<td>88.0</td>
<td>88.3</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charniak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>86.7</td>
<td>86.6</td>
<td>1.20</td>
</tr>
<tr>
<td>2000</td>
<td>89.6</td>
<td>89.5</td>
<td>0.88</td>
</tr>
</tbody>
</table>
By now, lexicalization was kind of controversial
– So many probabilities, such expensive parsing: is it necessary?

Goal: reasonable unlexicalized baseline
– What tree transformations make sense?
– Markovization (what order?)
– Add all kinds of information to each node in the treebank

Performance close to Collins model, much better than earlier unlexicalized models
I hit the cats on mats with bats.
Markovization

horizontal: 1
vertical: 1

VP

VP[VB ... PP]

VP[VB ... NP]

VP[VB]

NP

PP

l

hit

the
cats

on

mats

with

bats

VP[VB] → VB

VP[VB ... NP] → VP[VB] NP

VP[VB ... PP] → VP[VB ... NP] PP
Markovization

S

VPs

VPs

VBvp

NPvp

VPs → VBvp NPvp ppvp

horizontal: ∞
vertical: 2

I

hit

the
cats

on

mats

with

bats
Markovization

• More vertical Markovization is better
 – Consistent with Johnson (1998)
• Horizontal 1 or 2 beats 0 or ∞
• Used (2, 2), but if sparse “back off” to 1
Other Tree Decorations

• Mark nodes with only 1 child as UNARY
• Mark DTs (determiners), RBs (adverbs) when they are only children
• Annotate POS tags with their parents
• Split IN (prepositions; 6 ways), AUX, CC, %
• NPs: temporal, possessive, base
• VPs annotated with head tag (finite vs. others)
• DOMINATES-V
• RIGHT-RECURSIVE NP
Comparison

<table>
<thead>
<tr>
<th></th>
<th>labeled recall</th>
<th>labeled precision</th>
<th>average crossing brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins</td>
<td>87.5</td>
<td>87.7</td>
<td>1.09</td>
</tr>
<tr>
<td>Model 1</td>
<td>88.1</td>
<td>88.3</td>
<td>1.06</td>
</tr>
<tr>
<td>Model 2</td>
<td>88.0</td>
<td>88.3</td>
<td>1.05</td>
</tr>
<tr>
<td>Model 3</td>
<td>86.7</td>
<td>86.6</td>
<td>1.20</td>
</tr>
<tr>
<td>Charniak</td>
<td>89.6</td>
<td>89.5</td>
<td>0.88</td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>86.3</td>
<td>85.1</td>
<td>1.31</td>
</tr>
<tr>
<td>K&M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>