
11-711: Algorithms for NLP

Homework Assignment #1: Formal Language Theory

Solutions

Out: September 15, 2015
Due: September 29, 2015

Problem 1 [15 points]

For the following NFA containing ε-moves,

q0start q1 q2
a

ε

b

ε

give an equivalent DFA.

Solution

q0start q1

q2q3

b

a

b

a b

a

a,b

Problem 2 [15 points]

Note: The following problems require you to design finite state machines. We ask that you do
not use any automated tools to solve these problems as you will not have access to such tools for
similar problems on the exams.

Give deterministic FSAs accepting the following languages. Please make sure your DFSAs are
fully defined: clearly mark start and final states and do not use shorthand notation for arcs.

1. [5 points] The set of strings over {a, b, c} in which the substring bc never occurs.
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q0 q1 q2

a, c

b

c

b a, b, c

a

Computations in state q1 have seen a prefix ending in b. Computations in the sink state q2
have seen a prefix containing bc.

2. [5 points] The set of strings over {1, 7} ending in 11711.

q0 q1 q2 q3 q4 q5

1

1 7

1 1

7

7

1

7

7

1

7

Computations in states q1, q2, q3, q4, and q5 have seen a prefix ending in 1, 11, 117, 1171,
and 11711, respectively.

3. [5 points] The set of strings over {0, 1} which are divisible by three when interpreted as a
binary number (ignoring leading zeroes).

For example 00000b = 0, which is divisible by 3, so 00000 should be accepted. 001001b = 9,
and thus should be accepted also. 101b = 5, is not divisible by 3, and thus should be rejected.

Note: ε should be interpreted as 0, and thus should be accepted.

q0 q1 q2

0

1 0

1 0

1

Computations in state qi have seen a prefix x where xb ≡ i mod 3. Note that appending 0 to
the right of a string multiplies it by two: (x0)b = 2× xb. Appending 1 to a string multiplies
by two and adds one: (x1)b = 2× xb + 1. The transitions are defined by:

δ(qi, 0) = q(2i mod 3)

δ(qi, 1) = q(2i+1 mod 3)

.

2



Problem 3 [10 points]

Give a non-deterministic FSA (possibly with ε moves) accepting the following language. Please
clearly mark start and final states.

4.1. The set of strings over {1, 7} ending in 11711. How does your NDFSA differ from the DFSA
you constructed in Problem 2.2?

q0 q1 q2 q3 q4 q5
1 1 7 1 1

1, 7

The NDFSA is simpler than the equivalent DFSA of Problem 2 because it can non-deterministically
“guess” when the fifth symbol from the right end of the input string has been read.

Problem 4 [15 points]

Give regular expressions for each of the following languages:

1. [7 points] The set of strings over {a, b, c} in which the substring bc never occurs.

(a+ c+ bb∗a)∗b∗,

which can be simplified to

(c+ b∗a)∗b∗

Every string of b’s must either end the string or be followed by an a.

2. [8 points] The language described in Problem 2.3: The set of strings over {0, 1} which are
divisible by three when interpreted as a binary number (ignoring leading zeroes).

For example 00000b = 0, which is divisible by 3, so 00000 should be accepted. 001001b = 9,
and thus should be accepted also. 101b = 5, is not divisible by 3, and thus should be rejected.

Note: ε should be interpreted as 0, and thus should be accepted.

(0 + 1(01∗0)∗1)∗

Examine the FSA in Problem 2.3 and consider all of the sequences of moves beginning in q0
that lead back to q0. One possibility is to take the immediate loop from q0 to q0 emitting a
0. Another possible loop is to go to q1 via the 1 arc, then back from q1 to q0 along the other
1 arc. While we’re in q1, however, we may take zero or more detours through q2, via the path
01∗0.

Thus, we may either follow the q0 to q0 loop labeled 0, or go to q1 and back, possibly with
detours. We may follow either of these two loops as many times as we want, in any order,
intermingling them if we wish. This gives us a regex of the form (Loop1+Loop2)

∗. Plugging
in 0 for Loop1 and 1(01∗0)1 for Loop2 gives the final regular expression.
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Problem 5 [20 points]

We may define generalized regular expressions (GREs) as follows:

1. ∅ is a GRE denoting the empty language;

2. ε is a GRE denoting the language {ε};

3. for each σ ∈ Σ, σ is a GRE denoting the language {σ};

4. if α and β are GREs, denoting the languages A and B, respectively, then

• (α | β) is a GRE denoting A ∪B;

• (αβ) is a GRE denoting A.B;

• α∗ is a GRE denoting A∗;

• [new] (α ∧ β) is a GRE denoting A ∩B; and

• [new] ¬α is a GRE denoting A.

Prove that the languages denoted by GREs are regular.

Note: you may use refer to the definitions and proofs about REs we provided in class and only
deal with the two new clauses in the generalized definition.

Solution

• [new] ¬α is a GRE denoting A.
We know every RE has an equivalent DFA and vice versa, so we can use a proof by construc-
tion. For RE α, there is some DFA D = (Q,Σ, δ, q0, F ) for the same language A.
We can then construct D′ = (Q,Σ, δ, q0, Q− F )
Claim: L(D′) = A
For any x ∈ A, x ∈ Σ∗ − A, so δ̂(q0, x) /∈ F and therefore δ̂(q0, x) ∈ Q − F which means
x ∈ L(D′), so L(D′) = A and is thus the DFA equivalent of ¬α, so ¬α is regular.

• [new] (α ∧ β) is a GRE denoting A ∩B
By set theory, we know α∧β = α|β. Since GREs are closed under union and complementation,
they are closed under intersection.

Problem 6 [25 points]

For each of the following statements, answer whether the claim is true or false, and give a short
(two- to three-sentence) explanation if true or counterexample if false.

1. [5 points] Let L1 ⊂ L2. If L1 is not regular, then L2 must also be not regular.

False. As a counterexample, let L1 = {0n1n | n > 0} and L2 = Σ∗. L1 is non-regular and
L2 is regular, yet L1 ⊂ L2.
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2. [5 points] L = L1 ∩ L2. If L1 and L are regular languages, then L2 must also be a regular
language. False. As a counterexample, let L1 = 01, which is regular, and L2 = {0n1n|n > 0},
which is not regular. L = 01 is regular.

3. [5 points] L = L1 ∪ L2. If L1 and L are regular languages, then L2 must also be a regular
language.

False. As a counterexample, let L1 = Σ∗, which is regular, and L2 = {0n1n | n > 0}, which
is not regular. Yet L = L1 ∪ L2 = Σ∗ is regular.

4. [5 points] L =
⋂∞

i=1 Li. If all of the Li are regular languages, then L is also a regular
language.

False. As a counterexample, let Li = {0, 1}∗ \ {0i1i}.
Each language Li is the complement of a set that consists of a single word, and is thus regular.
However, L = {0, 1}∗ \ {0i1i | i ≥ 1} is the complement of {0i1i | i ≥ 1} which is not regular,
thus L is not regular.

5. [5 points] Let α, β and γ be regular expressions.

If L(β + αγ) ⊆ L(γ), then L(α∗β) ⊆ L(γ).

True.

We show by induction that ∀n L(αnβ) ⊆ L(γ).

Base case (n = 0): L(α0β) = L(β) ⊆ L(β + αγ) ⊆ L(γ).

Induction step: Assume L(αnβ) ⊆ L(γ). Then

L(αn+1β) = L(α)L(αnβ)

⊆ L(α)L(γ) (by the inductive hypothesis)

= L(αγ) ⊆ L(β + αγ) ⊆ L(γ).
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