
11-711 Algorithms for NLP – Midterm Exam

October 23, 2014

• Before you go on, write your name at the space provided on the bottom of
this page and every page of the exam.

• There are 8 pages in this exam (including this page). Verify that you have a complete
copy.

• Write up your answers following each question in the exam. Adequate space has been
provided.

• If you really feel that you you need more space you may continue on the reverse side,
but you must clearly mark the page so that we know your answer continues on the
reverse side.

• The exam is open book and open notes, and is worth a total of 100 points.

• You will be given 85 minutes to complete the exam. Budget your time accordingly.

• Keep answers short and to-the-point. Concise, direct answers will receive more credit
than longer, essay-like answers.

• If you find a question ambiguous, state your assumptions precisely, and proceed.

Question Points Score

1 35
2 35
3 30

Total 100

Student Name:
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Problem 1 – FSAs and Boolean Logic1

(35 minutes/35 points)

In this problem we will consider the language of boolean expressions over the alphabet
Σ = {p,¬,∨,∧}, where p is the name of a boolean variable, ¬ represents the unary negation
operator (“not”), ∧ represents the binary conjunction operator (“and”), and ∨ represents
the binary disjunction operator (“or”).

1. Verifying well-formedness (10 points): Draw an FSA that accepts the language
consisting of all properly formed boolean expressions. Some examples of well formed
boolean expressions are ¬p, p ∧ ¬p ∨ p, and ¬¬¬p. Some examples of malformed
expressions are p ∧ ∨p and ∧p ∨ p.
A formal definition of the language of well formed expressions is as follows:

• p is well formed.

• if w is a well formed expression, then ¬w is also well formed.

• If w and v are well formed expressions, then w∧ v and w∨ v are also well formed.

Your FSA must contain as few states as possible. You may either accept or reject ε,
whichever allows your FSA to use fewer states.

1Adapted from a problem by Sukhamay Kundu at UC Berkeley

2



Student Name:

solution: This is possible with only two states. Epsilons are not necessary:

0

¬

1
p
∧
∨
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2. Determining satisfiability (25 points): Consider the language of satisfiable
boolean expressions using the same alphabet Σ. An expression w(p) is satisfiable
if it evaluates to true (T) for at least one of the cases p = true or p = false. For
example p ∨ ¬p and p ∧ ¬¬p ∨ ¬p are satisifiable, while p ∧ ¬p and ¬¬p ∧ ¬p are
not satisifable. You should assume that the expression is evaluated following standard
order of operations. In particular, ¬ has the highest precedence (i.e. is evaluated first),
∨ has the lowest precedence (i.e. is evaluated last), and ∧ is in the middle.

Is the langauge of well formed, satisifiable boolean expressions regular?

• If so, construct an FSA that accepts it. You may define the FSA formally or by
drawing it, or you may build it up from smaller FSAs using union, intersection,
negation, and/or concatenation operations.

• If not, prove that it is not regular by using the pumping lemma.
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solution:
Note that since ∨ has the lowest precedence, any valid expression has the form w1 ∨
w2∨w3 . . . , where wi is a well-formed expression consisting of only p, ¬, and ∧. Further
note that the whole expression is fulfillable if any one wi is fulfillable. Thus we may
express the solution in regex form as (q∨)∗v(∨q)∗ where q is a regex matching any valid
(non-ε) expression, and v is a regex matching a satisfiable expression.
Furthermore, note that v can be broken down as vT + vF where vT is a regex matching
expressions satisfied when p = True, and vF is a regex matching expressions satisfied
when p = False.
Thus the desired FST can be expressed as simple FSA operations (namely concatena-
tion, union, and closure) on three basic FSAs, each of which contains at most three
states.

In FSA form we have vT and vF :
vT vF

0

1
p

2
¬

∧

¬
0

1¬
¬

2
p

∧

Then we have vT ∪ vF = v:

0

1
ε

4

ε

2p

3
¬

5¬

∧

¬

¬
6

p

∧

q is the FSA from part 1:

0

¬

1
p
∧
∨

Putting all the pieces together, as per the regex results in this:
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1 2
p

∧,∨
¬

0

∨
ε

3

4

5

8

7

6

11

10

p

∧,∨
¬

∨

12

9 ε
ε

ε

ε

ε

p

∧

¬¬

¬¬
p

∧ ε
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Problem 2 – Parachute Man

(20 minutes/35 points)

“Parachute Man” is a 1-player guessing game. You start with an unknown word y, randomly
chosen from a dictionary D ⊆ Σ∗, where Σ = {a, b, . . . , z}. Each letter of y is initially
obscured by a “?” symbol, so at the beginning of the game, you only know its length. There
is a stick figure drawn attached to a parachute by 10 strings.

In each turn, you guess a letter σ ∈ Σ that you haven’t already guessed. If y contains
the letter σ, then each occurence of σ in y is revealed. If not, you erase one string from your
parachute. The goal of the game is to correctly guess every letter in y before you lose all of
the strings in your parachute.

A game state can be modeled as a triple (G,M,x), where G ⊆ Σ are the letters you’ve
guessed correctly, M ⊆ Σ are the letters you’ve guessed incorrectly (so G ∩M = ∅), and
x ∈ (G ∪ {?})n represents the partially revealed solution.

Your best strategy to win at Parachute Man is to pick the letters that are mostly likely
to be used in the solution, given everything you know about the current game state. One
impractically slow algorithm for finding your best guess would be to loop over each word x
in the dictionary D, checking that it is compatible with the current game state (same length,
does not contain any letters in M , etc.).

1. FSA for compatible words (10 points): Assume that you have a FSA A encoding
D (in other words, L(A) = D). How can you construct an FSA B which accepts exactly
the set D(G,M,x) of words in D that are compatible with a game state (G,M,x)?

solution: Let n be the length of x. Build a linear chain FSA with n+ 1 states. Let
state 0 be the start state and state n be the lone final state. For each i ∈ [1, n], if
xi 6= ?, add a transition from state i− 1 to state i with arc label xi. Otherwise xi = ?,
so add an arc from state i−1 to state i ∀σ ∈ Σ−G−M , representing the fact that any
letter in σ, other than those that we have already guessed, could fill that slot. This
FSA represents all sequences in Σ∗ that are compatible with x, regardless of whether
they are in D.
Now intersect this linear chain FSA with A. Since we know (as per HW1) that FSAs
are closed under intersection, the result will be an FSA that only accepts words that
are both compatible with x and in D.
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2. Count compatible words (10 points): Explain how you can use B, the FSA
you constructed in the previous answer, along with the PathSum (i.e., Forward)
algorithm to count the number of words in D(G,M,x).

solution: Each path in B corresponds to a unique word that is consistent with
(G,M, x). Thus if we give each arc a weight of 1 and run the PathSum algorithm
with the standard path counting semiring (shown below), the result will be the total
number of words consistent with the game state.
K = Z∗
⊕ = +
⊗ = ×
0̄ = 0
1̄ = 1

3. Letter counts (15 points): Give an algorithm Count(σ) that returns the number
of times the letter σ ∈ Σ occurs in D(G,M,x). You may return either the number of
words that contain σ or the number of times σ occurs in all words (i.e., you can count
“o” once or twice in “food”); just declare which problem you are solving.

solution: To count the number of words that contain σ give each arc in B a weight
of 0 if its label is σ and a label of 1 otherwise. Now, simply run the PathSum algorithm
with the same semiring as in Part 2. The result will be the number of words in B that
do not contain σ. Simply subtract this number from the result from Part 2 to get the
total number of words that do contain σ.
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Problem 3 – Formal Language Theory

(30 minutes/30 points)

Several parsers in recent years have found it useful to use the following extended version of
Context-Free Grammars, which allows specifying limited forms of regular expressions on the
right-hand side (RHS) of context-free production rules. Formally, an extended CFG G is
defined as G = (T, V, P, S), where T , V and S are respectively a set of terminal symbols,
a set of non-terminal symbols, and a starting non-terminal. This is the same as a standard
CFG. Productions P however consist of a left-hand side (LHS) non-terminal A ∈ V , and a
RHS, that is a finite string of zero or more elements E1E2 · · ·Ek, where each Ei is one of the
following:

1. a terminal symbol a ∈ T

2. a non-terminal B ∈ V

3. (B|C), denoting a disjunction of B or C, where B and C are nonterminals from V

4. [B], denoting an optional B ∈ V

5. B∗, denoting zero or more occurrences of B ∈ V

For example, the rule A → (B|C) D∗ denotes that the RHS starts with either B or C,
followed by zero or more Ds.
We wish to show that such extended-CFGs can accept only CFLs. Show that given an
extended-CFG G, it can be converted into a standard CFG G′ such that L(G′) = L(G).
To do so, describe how to convert any extended production in G into one or more standard
CFG grammar rules, in the following way:

1. For each of the above possible cases of a RHS element Ei, describe how to convert a
rule of the form A→ Ei into one or more standard CFG rules.
(10 points)

solution: For cases 1 and 2, no modification is necessary. Rules of these types, A→ a
and A→ B are already standard CFG rules.
For case 3, convert the rule A → (B|C) into three rules: A → A′, A′ → B, and
A′ → C.
For case 4, convert the rule A→ [B] into three rules: A→ A′, A′ → B, and A′ → ε.
For case 5, convert the rule A→ B∗ into three rules: A→ A′, A′ → B A′, and A′ → ε.
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2. Outline (in words or pseudo-code) an algorithm for converting an extended grammar
rule where the RHS consists of a string of zero or more such elements E1E2 · · ·Ek.
(10 points)

solution: Let us assume each rule in our extended grammar is of the form A →
E1E2 · · ·Ek, where each Ei is of one of the five forms given in the question. Note that
if k = 0, then by convention we write A→ ε rather than simply leaving the RHS blank.

We desire to convert a set of grammar rules of this form into a set of rules where each
Ei is constrained to be only of form 1 or form 2. We will do this by iteratively choosing
a rule r that contains an Ei of form 3, 4, or 5 and replacing r with three rules as follows.

If Ei is of the form (B|C) (i.e. r is of the form A→ E1E2 · · ·Ei−1(B|C)Ei+1Ei+2 · · ·Ek)
then remove r from the grammar and add the following three rules:
A → E1E2 · · ·Ei−1A

′Ei+1Ei+2 · · ·Ek, A′ → B and A′ → C. Note that the latter two
rules do not contain any extended symbols in their right hand sides.

If Ei is of the form [B], remove r from the grammar and replace it with two rules:
A → E1E2 · · ·Si−1A

′Ei+1Ei+2 · · ·Ek, A′ → B, and A′ → ε. Again the latter two rules
do not contain any extended RHS symbols.

If Ei is of the form B∗, remove r from the grammar and replace it with three rules:
A → E1E2 · · ·Ei−1A

′Ei+1Ei+2 · · ·Ek, A′ → B A′, and A′ → ε. Yet again, note that
the latter two rules do not have any non-standard RHS elements.

We can iteratively apply this algorithm, removing extended symbols (those of forms 3,
4, or 5) on the RHS until the grammar contains no more of them at all.
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3. Briefly argue informally why your conversion algorithm is correct.
(3 points) solution: Each iteration of the above algorithm chooses a single extended
RHS symbol to remove. We then construct a grammar that produces the same lan-
guage, but contains exactly one fewer extended symbols on the RHS of its rules. Thus,
if we apply this iteratively, eventually we will arrive at a grammar that contains no
extended RHS symbols, yet still produces the same language as the original grammar.
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4. Execute your conversion procedure on the rule A→ (B|C) D∗ and show the resulting
standard CFG rules.
(2 points) solution: First convert the disjunction:
A→ A′D∗

A′ → B
A′ → C

Next convert the closure element: A→ A′D′

A′ → B
A′ → C
D′ → DD′

D′ → ε

The resulting grammar contains 5 standard CFG rules.

5. Assume you have an extended-CFG G of n rules. How many rules would the converted
CFG G′ have in the worst case?
(5 points) solution: Assume we have an extended-CFG G of n rules, each of which
has at most k elements on its RHS. Each time we convert an extended CFG element,
we produce three new rules, and remove the original one. In the worst case, all k of
the RHS elements of all n rules are extended elements, and thus we will need to run
the algorithm detailed in part 3 a total of nk times. Each time our rule count increases
by 2. Thus our final rule count will be the original n rules plus an additional 2nk new
rules, for a total of (2k + 1)n rules.
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