
Semantics and

First-Order Predicate Calculus

11-711 Algorithms for NLP

24 November 2014

(With thanks to Noah Smith)

Key Challenge of Meaning

• We actually say very little - much more is left unsaid,

because it’s assumed to be widely known.

• Examples:

• Reading newspaper stories

• Using restaurant menus

• Learning to use a new piece of software

Meaning Representation Languages

• Symbolic representation that does two jobs:

• Conveys the meaning of a sentence

• Represents (some part of) the world

• We’re assuming a very literal, context-independent,

inference-free version of meaning!

• Semantics vs. linguists’ “pragmatics”

• “Meaning representation” vs some philosophers’ use of

the term “semantics”.

• Today we’ll use first-order logic. Also called First-Order

Predicate Calculus. Logical form.

A MRL Should Be Able To ...

• Verify a query against a knowledge base: Do CMU students

follow politics?

• Eliminate ambiguity: CMU students enjoy visiting Senators.

• Cope with vagueness: Sally heard the news.

• Cope with many ways of expressing the same meaning

(canonical forms): The candidate evaded the question vs.

The question was evaded by the candidate.

• Draw conclusions based on the knowledge base: Who could

become the 45th president?

• Represent all of the meanings we care about

Model-Theoretic Semantics

• Model: a simplified representation of (some part of) the

world: objects, properties, relations (domain).

• Non-logical vocabulary

• Each element denotes (maps to) a well-defined part of

the model

• Such a mapping is called an interpretation

A Model

• Domain: Noah, Karen, Rebecca, Frederick, Green Mango,

Casbah, Udipi, Thai, Mediterranean, Indian

• Properties: Green Mango and Udipi are crowded; Casbah is

expensive

• Relations: Karen likes Green Mango, Frederick likes Casbah,

everyone likes Udipi, Green Mango serves Thai, Casbah serves

Mediterranean, and Udipi serves Indian

• n, k, r, f, g, c, u, t, m, i

• Crowded = {g, u}

• Expensive = {c}

• Likes = {(k, g), (f, c), (n, u), (k, u), (r, u), (f, u)}

• Serves = {(g, t), (c, m), (u, i)}

Some English

• Karen likes Green Mango and Frederick likes Casbah.

• Noah and Rebecca like the same restaurants.

• Noah likes expensive restaurants.

• Not everybody likes Green Mango.

• What we want is to be able to represent these statements

in a way that lets us compare them to our model.

• Truth-conditional semantics: need operators and their

meanings, given a particular model.

First-Order Logic

• Terms refer to elements of the domain: constants,

functions, and variables

• Noah, SpouseOf(Karen), X

• Predicates are used to refer to sets and relations;

predicate applied to a term is a Proposition

• Expensive(Casbah)

• Serves(Casbah, Mediterranean)

• Logical connectives (operators):

 ∧ (and), ∨ (or), ¬ (not), ⇒ (implies), ...

• Quantifiers ...

Quantifiers in FOL

• Two ways to use variables:

• refer to one anonymous object from the domain

(existential; ∃; “there exists”)

• refer to all objects in the domain (universal; ∀; “for all”)

• A restaurant near CMU serves Indian food

∃x Restaurant(x) ∧ Near(x, CMU) ∧ Serves(x, Indian)

• All expensive restaurants are far from campus

∀x Restaurant(x) ∧ Expensive(x) ⇒ ¬Near(x, CMU)

Extension: Lambda Notation

• A way of making anonymous functions.

• λx. (some expression mentioning x)

• Example: λx.Near(x, CMU)

• Trickier example: λx.λy.Serves(y, x)

• Lambda reduction: substitute for the variable.

• (λx.Near(x, CMU))(LulusNoodles)

becomes

Near(LulusNoodles, CMU)

Lambda reduction: order matters!

• λx.λy.Serves(y, x) (Bill)(Jane) becomes λy.Serves(y, Bill)(Jane)

Then λy.Serves(y, Bill) (Jane) becomes Serves(Jane, Bill)

• λy.λx.Serves(y, x) (Bill)(Jane) becomes λx.Serves(Bill, x)(Jane)

Then λx.Serves(Bill, x) (Jane) becomes Serves(Bill, Jane)

Inference

• Big idea: extend the knowledge base, or check some

proposition against the knowledge base.

• Forward chaining with modus ponens: given α and α ⇒ β,

we know β.

• Backward chaining takes a query β and looks for

propositions α and α ⇒ β that would prove β.

• Not the same as backward reasoning (abduction).

• Used by Prolog

• Both are sound, neither is complete.

Inference example

• Starting with these facts:

Restaurant(Udipi)

∀x Restaurant(x) ⇒ Likes(Noah, x)

• We can “turn a crank” and get this new fact:

Likes(Noah, Udipi)

FOL: Meta-theory

• Well-defined set-theoretic semantics

• Sound: can’t prove false things

• Complete: can prove everything that logically follows from

a set of axioms (e.g., with “resolution theorem prover”)

• Well-behaved, well-understood

• Mission accomplished?

FOL: But there are also “Issues”

• “Meanings” of sentences are truth values.

• Only first-order (no quantifying over predicates [which the

book does without comment]).

• Not very good for “fluents” (time-varying things, real-

valued quantities, etc.)

• Brittle: anything follows from any contradiction(!)

• Goedel incompleteness: “This statement has no proof”!

• (Finite axiom sets are incomplete w.r.t. the real world.)

• So: Most systems use its descriptive apparatus (with

extensions) but not its inference mechanisms.

First-Order Worlds, Then and Now

• Interest in this topic (in NLP) waned during the 1990s and

2000s.

• It has come back, with the rise of semi-structured

databases like Wikipedia.

• Lay contributors to these databases may be helping us to

solve the knowledge acquisition problem.

• Also, lots of research on using NLP, information extraction,

and machine learning to grow and improve knowledge

bases from free text data.

• “Read the Web” project here at CMU.

Lots More To Say About MRLs!

• See chapter 17 for more about:

• Representing events and states in FOL

• Dealing with optional arguments (e.g., “eat”)

• Representing time

• Non-FOL approaches to meaning

Connecting Syntax and Semantics

Semantic Analysis

• Goal: transform a NL statement into MRL (today, FOL).

• Sometimes called “semantic parsing.”

• As described earlier, this is the literal, context-independent,

inference-free meaning of the statement

“Literal, context-independent,

inference-free” semantics

• Example: The ball is red

• Assigning a specific, grounded meaning involves deciding

which ball is meant

• Would have to resolve indexical terms including pronouns,

normal NPs, etc.

• Logical form allows compact representation of such

indexical terms (vs. listing all members of the set)

• To retrieve a specific meaning, we combine LF with a

particular context or situation (set of objects and relations)

• So LF is a function that maps an initial discourse situation

into a new discourse situation.

Compositionality

• The meaning of an NL phrase is determined by combining

the meaning of its sub-parts.

• There are obvious exceptions (“hot dog,” “straw man,”

“New York,” etc.).

• Note: your book uses an event-based FOL representation,

but I’m using a simpler one without events.

• Big idea: start with parse tree, build semantics on top using

FOL with λ-expressions.

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S
NNP → Noah { Noah }

VBZ → likes { λf.λy.∀x f(x) ⇒ Likes(y, x) }

JJ → expensive { λx.Expensive(x) }

NNS → restaurants { λx.Restaurant(x) }

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

λx.Restaurant(x) λx.Expensive(x)

λf.λy.∀x
f(x) ⇒ Likes(y, x)

Noah

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

λx.Restaurant(x) λx.Expensive(x)

λf.λy.∀x
f(x) ⇒ Likes(y, x)

Noah

NP → NNP { NNP.sem }

NP → JJ NNS { λx. JJ.sem(x) ∧ NNS.sem(x) }

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

λx.Restaurant(x) λx.Expensive(x)

λf.λy.∀x
f(x) ⇒ Likes(y, x)

Noah

λx. Expensive(x) ∧ Restaurant(x) Noah

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

λx.Restaurant(x) λx.Expensive(x)

λf.λy.∀x
f(x) ⇒ Likes(y, x)

Noah

λx. Expensive(x) ∧ Restaurant(x) Noah

VP → VBZ NP { VBZ.sem(NP.sem) }

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

λx.Restaurant(x) λx.Expensive(x)

λf.λy.∀x
f(x) ⇒ Likes(y, x)

Noah

λx. Expensive(x) ∧ Restaurant(x) Noah

λy.∀x Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

λx.Restaurant(x) λx.Expensive(x)

λf.λy.∀x
f(x) ⇒ Likes(y, x)

Noah

λx. Expensive(x) ∧ Restaurant(x) Noah

λy.∀x Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

S → NP VP { VP.sem(NP.sem) }

An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

λx.Restaurant(x) λx.Expensive(x)

λf.λy.∀x
f(x) ⇒ Likes(y, x)

Noah

λx. Expensive(x) ∧ Restaurant(x) Noah

λy.∀x Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

∀x Expensive(x) ∧ Restaurant(x) ⇒ Likes(Noah, x)

Alternative (Following SLP)

• Noah likes expensive restaurants.

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)

NNS JJ VBZ NNP

NP

VP

NP

S

λx.Restaurant(x) λx.Expensive(x)

λf.λy.∀x
f(x) ⇒ Likes(y, x)

λx. Expensive(x) ∧ Restaurant(x)

λy.∀x Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

∀x Expensive(x) ∧ Restaurant(x) ⇒ Likes(Noah, x)

λf.f(Noah)

λf.f(Noah)

S → NP VP { NP.sem(VP.sem) }

Quantifier Scope Ambiguity

• Every man loves a woman.

• ∀u Man(u) ⇒ ∃x Woman(x) ∧ Loves(u, x)

NN Det VBZ NN

NP

VP

NP

S

Det

S → NP VP { NP.sem(VP.sem) }

NP → Det NN { Det.sem(NN.sem) }

VP → VBZ NP { VBZ.sem(NP.sem) }

Det → every { λf.λg.∀u f(u) ⇒ g(u) }

Det → a { λm.λn.∃x m(x) ∧ n(x) }

NN → man { λv.Man(v) }

NN → woman { λy.Woman(y) }

VBZ → loves { λh.λk.h(λw. Loves(k, w)) }

This Isn’t Quite Right!

• “Every man loves a woman” really is ambiguous.

• ∀u Man(u) ⇒ ∃x Woman(x) ∧ Loves(u, x)

• ∃x Woman(x) ∧ ∀u Man(u) ⇒ Loves(u, x)

• This gives only one of the two meanings.

- Extra ambiguity on top of syntactic ambiguity

• One approach is to delay the quantifier processing until the

end, then permit any ordering.

Quantifier Scope

• A seat was available for every customer.

• A toll-free number was available for every customer.

• A secretary called each director.

• A letter was sent to each customer.

• Every man loves a woman

 who works at the candy store.

• Every 5 minutes a man gets knocked down

 and he’s not too happy about it.

What Else?

• Chapter 18 discusses how you can get this to work for

other parts of English (e.g., prepositional phrases).

• Remember attribute-value structures for parsing with more

complex things than simple symbols?

• You can extend those with semantics as well.

• No time for ...

• Statistical models for semantics

• Parsing algorithms augmented with semantics

• Handling idioms

Generalized Quantifiers

• In FOL, we only have universal and existential quantifiers

• One formal extension is type-restriction of the quantified

variable: Everyone likes Udipi:

 ∀x Person(x) ⇒ Likes(x, Udipi) becomes

 ∀x | Person(x).Likes(x, Udipi)

• English and other languages have a much larger set of

quantifiers: all, some, most, many, a few, the, …

• These have the same form as the original FOL quantifiers

with type restrictions:

 <quant><var>|<restriction>.<body>

Generalized Quantifier examples

• Most dogs bark

Most x | Dog(x) . Barks(x)

• Most barking things are dogs

Most x | Barks(x) . Dog(x)

• The dog barks

The x | Dog(x) . Barks(x)

• The happy dog barks

The x | (Happy(x) ∧ Dog(x)) . Barks(x)

• Interpretation and inference using these are harder…

Speech Acts

• Mood of a sentence indicates relation between speaker

and the concept (proposition) defined by the LF

• There can be operators that represent these relations:

• ASSERT: the proposition is proposed as a fact

• YN-QUERY: the truth of the proposition is queried

• COMMAND: the proposition describes a requested action

• WH-QUERY: the proposition describes an object to be

identified

ASSERT (Declarative mood)

• The man eats a peach

ASSERT(The x | Man(x) . (A y | Peach(y) . Eat(x,y)))

YN-QUERY (Interrogative mood)

• Does the man eat a peach?

YN-QUERY(The x | Man(x) . (A y | Peach(y) . Eat(x,y)))

COMMAND (Imperative mood)

• Eat a peach, (man).

COMMAND(A y | Peach(y) . Eat(*HEARER*,y))

WH-QUERY

• What did the man eat?

WH-QUERY(The x | Man(x) . (WH y | Thing(y) . Eat(x,y)))

• One of a whole set of new quantifiers for wh-questions:

• What: WH x | Thing(x)

• Which dog: WH x | Dog(x)

• Who: WH x | Person(x)

• How many men: HOW-MANY x | Man(x)

Other complications

• Relative clauses are propositions embedded in an NP

• Restrictive versus non-restrictive: the dog that barked all

night vs. the dog, which barked all night

• Modal verbs: non-transparency for truth of subordinate

clause: Sue thinks that John loves Sandy

• Tense/Aspect

• Plurality

• Etc.

