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Key Challenge of Meaning 

• We actually say very little - much more is left unsaid, 

because it’s assumed to be widely known. 

 

• Examples: 

• Reading newspaper stories 

• Using restaurant menus 

• Learning to use a new piece of software 



Meaning Representation Languages 

• Symbolic representation that does two jobs: 

• Conveys the meaning of a sentence 

• Represents (some part of) the world 

• We’re assuming a very literal, context-independent, 

inference-free version of meaning! 

• Semantics vs. linguists’ “pragmatics” 

• “Meaning representation” vs some philosophers’ use of 

the term “semantics”. 

• Today we’ll use first-order logic.  Also called First-Order 

Predicate Calculus.  Logical form. 



A MRL Should Be Able To ... 

• Verify a query against a knowledge base: Do CMU students 

follow politics? 

• Eliminate ambiguity: CMU students enjoy visiting Senators. 

• Cope with vagueness: Sally heard the news. 

• Cope with many ways of expressing the same meaning 

(canonical forms): The candidate evaded the question vs.  

The question was evaded by the candidate. 

• Draw conclusions based on the knowledge base: Who could 

become the 45th president? 

• Represent all of the meanings we care about 



Model-Theoretic Semantics 

• Model:  a simplified representation of (some part of) the 

world:  objects, properties, relations (domain). 

• Non-logical vocabulary 

• Each element denotes (maps to) a well-defined part of 

the model 

• Such a mapping is called an interpretation 



A Model 

• Domain:  Noah, Karen, Rebecca, Frederick, Green Mango, 

Casbah, Udipi, Thai, Mediterranean, Indian 

• Properties:  Green Mango and Udipi are crowded; Casbah is 

expensive 

• Relations:  Karen likes Green Mango, Frederick likes Casbah, 

everyone likes Udipi, Green Mango serves Thai, Casbah serves 

Mediterranean, and Udipi serves Indian 

 

• n, k, r, f, g, c, u, t, m, i 

• Crowded = {g, u} 

• Expensive = {c} 

• Likes = {(k, g), (f, c), (n, u), (k, u), (r, u), (f, u)} 

• Serves = {(g, t), (c, m), (u, i)} 



Some English 

• Karen likes Green Mango and Frederick likes Casbah. 

• Noah and Rebecca like the same restaurants. 

• Noah likes expensive restaurants. 

• Not everybody likes Green Mango. 

 

• What we want is to be able to represent these statements 

in a way that lets us compare them to our model. 

• Truth-conditional semantics:  need operators and their 

meanings, given a particular model. 



First-Order Logic 

• Terms refer to elements of the domain:  constants, 

functions, and variables 

• Noah, SpouseOf(Karen), X 

• Predicates are used to refer to sets and relations; 

predicate applied to a term is a Proposition 

• Expensive(Casbah) 

• Serves(Casbah, Mediterranean) 

• Logical connectives (operators):   

  ∧ (and), ∨ (or), ¬ (not), ⇒ (implies), ... 

• Quantifiers ... 



Quantifiers in FOL 

• Two ways to use variables:   

• refer to one anonymous object from the domain 

(existential; ∃; “there exists”)  

• refer to all objects in the domain (universal; ∀; “for all”) 

 

• A restaurant near CMU serves Indian food                         

∃x Restaurant(x) ∧ Near(x, CMU) ∧ Serves(x, Indian) 

• All expensive restaurants are far from campus                  

∀x Restaurant(x) ∧ Expensive(x) ⇒ ¬Near(x, CMU) 



Extension:  Lambda Notation 

• A way of making anonymous functions. 

• λx. (some expression mentioning x) 

• Example:  λx.Near(x, CMU) 

• Trickier example:  λx.λy.Serves(y, x) 

• Lambda reduction:  substitute for the variable. 

• (λx.Near(x, CMU))(LulusNoodles)                             

becomes                                                                  

Near(LulusNoodles, CMU) 



Lambda reduction: order matters! 

• λx.λy.Serves(y, x) (Bill)(Jane)  becomes  λy.Serves(y, Bill)(Jane) 

Then  λy.Serves(y, Bill) (Jane)  becomes Serves(Jane, Bill) 

 

• λy.λx.Serves(y, x) (Bill)(Jane)  becomes  λx.Serves(Bill, x)(Jane) 

Then  λx.Serves(Bill, x) (Jane)  becomes Serves(Bill, Jane) 

 

 

 



Inference 

• Big idea:  extend the knowledge base, or check some 

proposition against the knowledge base. 

• Forward chaining with modus ponens:  given α and α ⇒ β, 

we know β. 

• Backward chaining takes a query β and looks for 

propositions α and α ⇒ β that would prove β. 

• Not the same as backward reasoning (abduction). 

• Used by Prolog 

• Both are sound, neither is complete. 



Inference example 

• Starting with these facts: 

Restaurant(Udipi) 

∀x Restaurant(x) ⇒ Likes(Noah, x) 

• We can “turn a crank” and get this new fact: 

Likes(Noah, Udipi) 

 



FOL: Meta-theory 

• Well-defined set-theoretic semantics 

• Sound: can’t prove false things 

• Complete: can prove everything that logically follows from 

a set of axioms (e.g., with “resolution theorem prover”) 

• Well-behaved, well-understood 

• Mission accomplished? 



FOL: But there are also “Issues” 

• “Meanings” of sentences are truth values. 

• Only first-order (no quantifying over predicates [which the 

book does without comment]). 

• Not very good for “fluents” (time-varying things, real-

valued quantities, etc.) 

• Brittle: anything follows from any contradiction(!) 

• Goedel incompleteness: “This statement has no proof”! 

• (Finite axiom sets are incomplete w.r.t. the real world.) 

• So: Most systems use its descriptive apparatus (with 

extensions) but not its inference mechanisms. 



First-Order Worlds, Then and Now 

• Interest in this topic (in NLP) waned during the 1990s and 

2000s. 

• It has come back, with the rise of semi-structured 

databases like Wikipedia. 

• Lay contributors to these databases may be helping us to 

solve the knowledge acquisition problem. 

• Also, lots of research on using NLP, information extraction, 

and machine learning to grow and improve knowledge 

bases from free text data. 

• “Read the Web” project here at CMU. 



Lots More To Say About MRLs! 

• See chapter 17 for more about: 

• Representing events and states in FOL 

• Dealing with optional arguments (e.g., “eat”) 

• Representing time 

• Non-FOL approaches to meaning 



Connecting Syntax and Semantics 



Semantic Analysis 

• Goal:  transform a NL statement into MRL (today, FOL).  

• Sometimes called “semantic parsing.” 

• As described earlier, this is the literal, context-independent, 

inference-free meaning of the statement 



“Literal, context-independent, 

inference-free” semantics 

• Example: The ball is red 

• Assigning a specific, grounded meaning involves deciding 

which ball is meant 

• Would have to resolve indexical terms including pronouns, 

normal NPs, etc. 

• Logical form allows compact representation of such 

indexical terms (vs. listing all members of the set) 

• To retrieve a specific meaning, we combine LF with a 

particular context or situation (set of objects and relations) 

• So LF is a function that maps an initial discourse situation 

into a new discourse situation. 



Compositionality 

• The meaning of an NL phrase is determined by combining 

the meaning of its sub-parts. 

• There are obvious exceptions (“hot dog,” “straw man,” 

“New York,” etc.). 

 

• Note:  your book uses an event-based FOL representation, 

but I’m using a simpler one without events. 

 

• Big idea:  start with parse tree, build semantics on top using 

FOL with λ-expressions. 
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Alternative (Following SLP) 

• Noah likes expensive restaurants. 

• ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x) 

NNS JJ VBZ NNP 

NP 

VP 

NP 

S 

λx.Restaurant(x) λx.Expensive(x) 

λf.λy.∀x  
f(x) ⇒ Likes(y, x) 

λx. Expensive(x) ∧ Restaurant(x) 

λy.∀x Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x) 

∀x Expensive(x) ∧ Restaurant(x) ⇒ Likes(Noah, x) 

λf.f(Noah) 

λf.f(Noah) 

S → NP VP { NP.sem(VP.sem) } 



Quantifier Scope Ambiguity 

• Every man loves a woman. 

 

• ∀u Man(u) ⇒ ∃x Woman(x) ∧ Loves(u, x) 

NN Det VBZ NN 

NP 

VP 

NP 

S 

Det 

S → NP VP { NP.sem(VP.sem) } 

NP → Det NN { Det.sem(NN.sem) } 

VP → VBZ NP { VBZ.sem(NP.sem) } 

Det → every { λf.λg.∀u f(u) ⇒ g(u) } 

Det → a { λm.λn.∃x m(x) ∧ n(x) }  

NN → man { λv.Man(v) } 

NN → woman { λy.Woman(y) } 

VBZ → loves { λh.λk.h(λw. Loves(k, w)) } 

 



This Isn’t Quite Right! 

• “Every man loves a woman” really is ambiguous. 

• ∀u Man(u) ⇒ ∃x Woman(x) ∧ Loves(u, x) 

• ∃x Woman(x) ∧ ∀u Man(u) ⇒ Loves(u, x) 

 

• This gives only one of the two meanings. 

- Extra ambiguity on top of syntactic ambiguity 

• One approach is to delay the quantifier processing until the 

end, then permit any ordering. 



Quantifier Scope 

• A seat was available for every customer. 

• A toll-free number was available for every customer. 

• A secretary called each director. 

• A letter was sent to each customer. 

• Every man loves a woman 

  who works at the candy store. 

• Every 5 minutes a man gets knocked down 

   and he’s not too happy about it. 

 



What Else? 

• Chapter 18 discusses how you can get this to work for 

other parts of English (e.g., prepositional phrases). 

• Remember attribute-value structures for parsing with more 

complex things than simple symbols?   

• You can extend those with semantics as well. 

• No time for ... 

• Statistical models for semantics 

• Parsing algorithms augmented with semantics 

• Handling idioms 



Generalized Quantifiers 

• In FOL, we only have universal and existential quantifiers 

• One formal extension is type-restriction of the quantified 

variable:  Everyone likes Udipi:    

  ∀x Person(x) ⇒ Likes(x, Udipi)     becomes   

  ∀x | Person(x).Likes(x, Udipi) 

• English and other languages have a much larger set of 

quantifiers: all, some, most, many, a few, the, … 

• These have the same form as the original FOL quantifiers 

with type restrictions: 

 <quant><var>|<restriction>.<body> 



Generalized Quantifier examples 

• Most dogs bark 

Most x | Dog(x) . Barks(x) 

• Most barking things are dogs 

Most x | Barks(x) . Dog(x) 

• The dog barks 

The x | Dog(x) . Barks(x) 

• The happy dog barks 

The x | (Happy(x) ∧ Dog(x)) . Barks(x) 

• Interpretation and inference using these are harder… 

 



Speech Acts 

• Mood of a sentence indicates relation between speaker 

and the concept (proposition) defined by the LF 

• There can be operators that represent these relations: 

• ASSERT: the proposition is proposed as a fact 

• YN-QUERY: the truth of the proposition is queried 

• COMMAND: the proposition describes a requested action 

• WH-QUERY: the proposition describes an object to be 

identified 



ASSERT (Declarative mood) 

• The man eats a peach 

ASSERT(The x | Man(x) . (A y | Peach(y) . Eat(x,y))) 



YN-QUERY (Interrogative mood) 

• Does the man eat a peach? 

YN-QUERY(The x | Man(x) . (A y | Peach(y) . Eat(x,y))) 

 



COMMAND (Imperative mood) 

• Eat a peach, (man). 

COMMAND(A y | Peach(y) . Eat(*HEARER*,y)) 



WH-QUERY 

• What did the man eat? 

WH-QUERY(The x | Man(x) . (WH y | Thing(y) . Eat(x,y))) 

• One of a whole set of new quantifiers for wh-questions:  

• What:  WH x | Thing(x) 

• Which dog:  WH x | Dog(x) 

• Who:  WH x | Person(x) 

• How many men:  HOW-MANY x | Man(x) 

 



Other complications 

• Relative clauses are propositions embedded in an NP 

• Restrictive versus non-restrictive: the dog that barked all 

night vs. the dog, which barked all night 

• Modal verbs: non-transparency for truth of subordinate 

clause:  Sue thinks that John loves Sandy  

• Tense/Aspect 

• Plurality 

• Etc. 


