
 1

Introduction to
Phrase-Structure Parsing

Miguel Ballesteros

Algorithms for NLP Course.
7-11

Using some of Chris's last year slides in 711

 2

Plan

● Parsing as Logical Deduction.
● Defining the CFG recognition problem.
● Bottom up vs. top down.

 3

Algorithms for CFGs

● Given a CFGG and a string S:

Recognition: Is S∈ L(G)?

– Equivalently, find somederivation that proves S is in

G's language.

Parsing:

– What are (all of) G's derivations of S?

– What is the “correct”derivation of S under G?

● The same core algorithms actually provide solutions
to both!

 4

Distinction

● Deterministic grammars give much faster
recognition and parsing algorithms
– For programming languages, they are parseable in

linear time (compilers)

● For NLP, this is much slower.
● Today you will learn an O(|N|3n3) solution.

 5

Parsing as search

● Top-down
● Bottom-up

 6

Top-Down Parsing
(Recursive Descent)

● Input: “Book a flight”

 7

Top-Down Parsing
(Recursive Descent)

● Input: “Book a flight”
(S)

 8

Top-Down Parsing
(Recursive Descent)

● Input: “Book a flight”
(S)

(S (NP (VP)) (S (NP (VP)) (S Aux (NP VP)) (S (VP))
(S (NP Pronoun) (VP)) (S NP ProperNoun) (VP)) (S (NP Det Nominal) (VP))

 9

Top-Down Parsing
(Recursive Descent)

● Input: “Book a flight”
(S)

(S (NP (VP))(S (NP (VP)) (S Aux (NP VP)) (S (VP))
(S (NP Pronoun) (VP)) (S NP ProperNoun) (VP)) (S (NP Det Nominal) (VP))
(S Aux (NP Pronoun) (VP)) (S Aux (NP ProperNoun)(VP)) (S Aux (NP Det Nominal) (VP))

 10

Top-Down Parsing
(Recursive Descent)

● Input: “Book a flight”
(S)

(S (NP (VP))(S (NP (VP)) (S Aux (NP VP)) (S (VP))
(S (NP Pronoun) (VP)) (S NP ProperNoun) (VP)) (S (NP Det Nominal) (VP))
(S Aux (NP Pronoun) (VP)) (S Aux (NP ProperNoun)(VP)) (S Aux (NP Det Nominal) (VP))
(S (VP (VP) (PP))) (S (VP Verb)) (S (VP Verb (NP))) (S (VP Verb (NP) (PP))) (S (VP Verb (PP)))

 11

Top-Down Parsing
(Recursive Descent)

● Does not waste time exploring ungrammatical
trees.

● Most search states (partial trees) will never lead
to a derivation of our sentence, though.

● Left recursion problem …

 12

Top-Down Parsing
(Recursive Descent)

Left recursion problem:

(S)

(S (VP))

(S(VP (VP) (PP)))

(S(VP (VP (VP) (PP)) (PP)))

(S(VP (VP (VP (VP) (PP)) (PP)) (PP)))

(S(VP (VP (VP (VP (VP) (PP)) (PP)) (PP)) (PP)))

(S(VP (VP (VP (VP (VP (VP) (PP)) (PP)) (PP)) (PP)) (PP)))

...

 13

Top-Down Recognition
(Recursive Descent)

● Don't need to store the tree...
● Can collapse states that has the same

functionality.
● Store unexpanded nonterminals (in sequence)

only, along with the number of words “covered”
so far.
– Reminds to as generating from a CFG.

 14

Bottom-Up Parsing

 Book that flight

(Noun book) (Det that) (Noun flight) (Verb book) (Det that) (Noun flight)

 15

Bottom-Up Parsing

 Book that flight

(Noun book) (Det that) (Noun flight) (Verb book) (Det that) (Noun flight)

(Nominal (Noun book)) (Det that) (Nominal (Noun flight))

 16

Bottom-Up Parsing

 Book that flight

(Noun book) (Det that) (Noun flight) (Verb book) (Det that) (Noun flight)

(Nominal (Noun book)) (Det that) (Nominal (Noun flight))

(Verb book) (Det that) (Nominal (Noun flight))

 17

Bottom-Up Parsing

 Book that flight

(Noun book) (Det that) (Noun flight) (Verb book) (Det that) (Noun flight)

(Nominal (Noun book)) (Det that) (Nominal (Noun flight))

(Verb book) (Det that) (Nominal (Noun flight))

(Nominal (Noun book)) (NP (Det that) (Nominal (Noun flight)))

 18

Bottom-Up Parsing

 Book that flight

(Noun book) (Det that) (Noun flight) (Verb book) (Det that) (Noun flight)

(Nominal (Noun book)) (Det that) (Nominal (Noun flight))

(Verb book) (Det that) (Nominal (Noun flight))

(Nominal (Noun book)) (NP (Det that) (Nominal (Noun flight)))(Nominal (Noun book)) (NP (Det that) (Nominal (Noun flight)))

...

 19

Bottom-Up Parsing

● Never generates trees that are inconsistent
with the sentence.

● Generates (lots of) partial trees that have no
hope of getting toS.

 20

Shift-Reduce

● A stack and a queue (or buffer).
● Remember PDAs?

– Very similar.

● You are in a state, you can either SHIFT (PUSH
to the stack) or Reduce (Pop from the stack)

● It is like a bottom up method.

 21

Ambiguity

● A sentence may havemany parses.
● Even if a sentence has only one parse, finding
● it may be difficult, because there are many misleading paths

you could follow.
– Bottom-up: fragments that can never have a home in any S.

– Top-down: fragments that never get you to x

● What to do when there are many parses...
● how to choose? Return them all?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

