Computational Discourse

11-711 Algorithms for NLP
4 December 2014
Introduction

• Discourse, monologue, dialogue, (conversation)
 – Discourse (SLP Ch. 21) vs. (Spoken) Dialogue Systems (SLP Ch. 24)

• “Longer-range” analysis (discourse) vs. “deeper” analysis (real semantics):
 – John bought a car from Bill
 – Bill sold a car to John
 – They were both happy with the transaction
Cohesion, coherence

• Coherence relations:
 – John hid Bill’s car keys. He was drunk.
 – John hid Bill’s car keys. He likes spinach.

• Entity-based coherence (Centering) and lexical cohesion:
 – John went to the store to buy a piano
 – He had gone to the store for many years
 – He was excited that he could finally afford a piano
 – He arrived just as the store was closing for the day
 versus
 – John went to the store to buy a piano
 – It was a store he had gone to for many years
 – He was excited that he could finally afford a piano
 – It was closing for the day just as John arrived
Discourse segmentation: TextTiling

- Using dips in **cohesion** to segment text.
Coherence Relations

S1: John went to the bank to deposit his paycheck
S2: He then took a bus to Bill’s car dealership
S3: He needed to buy a car
S4: The company he works for now isn’t near a bus line
S5: He also wanted to talk with Bill about their soccer league

Diagram:

```
Occasion (e₁;e₂)
  S1 (e₁)   Explanation (e₂)
    S2 (e₂)   Parallel (e₃;e₅)
    Explanation (e₃)   S5 (e₅)
    S3 (e₃)   S4 (e₄)
```
RST Coherence Relations

(2) With its distant orbit -- 50 percent farther from the sun than Earth -- <p> and slim atmospheric blanket,

(3) Mars experiences frigid weather conditions.

(4) Surface temperatures typically average about -60 degrees Celsius (-76 degrees Fahrenheit) <p> at the equator

(5) and can dip to -123 degrees C near the poles.

(6) Only the midday sun at tropical latitudes is warm enough

(7) to thaw ice on occasion,

(8) but any liquid water formed in this way would evaporate almost instantly.

(4-5) List

(4-9) elaboration-additional

2-3

2-9

evidence
RST formal relation definition

• Relation name: **Evidence**
• Constr on N: R not believing N enough for W
• Constr on S: R believes S, or would
• Constr on N+S: R’s believing S would increase R’s believing N
• Effects: R’s belief of N is increased
Automatic Coherence Assignment

• “Discourse parsing”?
• Use cue phrases/discourse markers
 – although, but, because, yet, with, ...
 – but often implicit, as in car key example
• Use abduction, defeasible inference
 – All men are mortal
 – Max was mortal
 – Maybe Max was a man
• The city denied the demonstrators a permit because they (feared/advocated) violence
Reference Resolution: example

• Victoria Chen, CFO of Megabucks Banking Corp since 2004, saw her pay jump 20%, to $1.3 million, as the 37-year-old also became the Denver-based company’s president. It has been ten years since she came to Megabucks from rival Lotsaloot.

• Should give 4 coreference chains:
 – {Victoria Chen, CFO of Megabucks Banking Corp since 2004, her, the 37-year-old, the Denver-based company’s president, she}
 – {Megabucks Banking Corp, the Denver-based company, Megabucks}
 – {her pay}
 – {Lotsaloot}.
Reference Resolution

• Determining the referent of a referring expression. Anaphora, antecedents corefer.
• 1961 Ford Falcon: it, this, that, this car, the car, the Ford, the Falcon, my friend’s car, ...
• Coreference chains are part of cohesion
• Note: other kinds of referents:
 – According to Doug, Sue just bought the Ford Falcon
 • But that turned out to be a lie
 • But that was false
 • That struck me as a funny way to describe the situation
 • That caused a financial problem for Sue
Discourse Models

- Discourse context, situational context
Types of Referring Expressions

• Indefinite NPs: *a/an, some, this, or nothing*
 – new entities; specific/non-specific ambiguity

• Definite NPs: usually *the*
 – an entity identifiable by the hearer

• Pronouns: *he, them, it, etc.* Also *cataphora.*
 – strong constraints on their use
 – can be bound: *Every student improved his grades*

• Demonstratives: *this, that*

• Names: construed to be unique, but they aren’t
 – *Is that the Bob in LTI or the Bob in the Lane Center?*
Information structure: given/new

• Where are my shoes? Your shoes are in the closet
• What’s in the closet?
 – ??Your shoes are in the closet.
 – Your shoes are in the closet.

• Definiteness/pronoun, length, position in S
• Inferrables: Some car. ... a door ... the engine ...
• Generics: At CMU you have to work hard.
• Pleonastic/clefts/extraposition:
 – It is raining. It was me who called. It was good that ...
Pronoun reference resolution: filters

• Agreement in number, person, gender
 • Pittsburgh dialect: *yinz=youse=y’all*
 • UK dialect: *Newcastle are a physical team.*
 – L can have >2 numbers, >3 persons, or >3 genders

• Binding theory: **reflexive** required/prohibited:
 – *John bought himself a new Ford.*
 [himself=John]
 – *John bought him a new Ford.*
 [him!=John]
 – *John said that Bill bought him a new Ford.*
 [him!=Bill]
 – *J said that B bought himself a new F.*
 [himself=Bill]
 – *He said that he bought J a new Ford.*
 [both he!=J]
Pronoun reference resolution: preferences

- Recency: preference for most recent referent
- Grammatical Role: subj > obj > others
 - *Billy went to the bar with Jim. He ordered rum.*
- Repeated mention: *Billy had been drinking for days. He went to the bar again today. Jim went with him. He ordered rum.*
- Parallelism: *John went with Jim to one bar. Bill went with him to another.*
- Verb semantics: *John phoned/criticized Bill. He lost the laptop.*
- Selectional restrictions: *John parked his car in the garage after driving it around for hours.*
Pronoun ref.res.: Hobbs Algorithm

- Algorithm for walking through parses of current and preceding sentences
- Simple, often used as baseline

- Requires parser, morph gender and number
 - plus head rules and WordNet for NP gender
- Implements binding theory, recency, and grammatical role preferences
Pronoun ref.res.: Centering theory

• Claim: a single entity is “centered” in each S
• Backward-looking center, Forward-looking centers
• $C_b = \text{most highly ranked } C_f \text{ used from prev. } S$
• Rank: Subj>ExistPredNom>Obj>IndObj-Obl>DemAdvPP
• Defined transitions: (Cp is front of Cf list)

<table>
<thead>
<tr>
<th>$C_b(U_{n+1}) = C_b(U_n)$</th>
<th>$C_b(U_{n+1}) \neq C_b(U_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>or undefined $C_b(U_n)$</td>
<td></td>
</tr>
</tbody>
</table>

- $C_b(U_{n+1}) = C_p(U_{n+1})$
 Continue
- $C_b(U_{n+1}) \neq C_p(U_{n+1})$
 Retain
 Smooth-Shift
 Rough-Shift

Rule 1: If any C_f used as Pro_{n+1}, then $C_{b(n+1)}$ must be Pro too
Rule 2: Rank: Continue>Retain>Smooth>Rough
U1: John saw a Ford at the dealership
Cb: NIL
Cf: John, Ford, dealership

U2: He showed it to Bob [Bob!=he]
He=John, it={Ford, dealership}
Cb=John
 • (it->Ford) => Cf: {John,Ford,Bob} => CONTINUE [tie-winner]
 • (it->dealership) => Cf: {John,dealer,Bob} => CONTINUE

U3: He bought it [dealership is now unavailable]
He={John,Bob}, it=Ford
 • (he->John) => Cb=John, Cf={John,Ford} => CONTINUE [Win]
 • (he->Bob) => Cb=Bob, Cf={Bob,Ford} => SMOOTH
Centering theory

- Same requirements as Hobbs
- Implements Grammatical Role, Recency, and Repeated Mention

- Can make mistakes:
 - *Bob opened a new dealership last week*
 - *John took a look at the Fords in his lot* [Cb=Bob]
 - *He ended up buying one*
 - He=Bob => CONTINUE, He=John => SMOOTH
Pronoun ref.res.: Log-linear model

- Supervised: hand-labelled coref corpus
- Rule-based filtering of non-referential pronouns
- Features, values for He in U3:

<table>
<thead>
<tr>
<th>Feature</th>
<th>He (U_2)</th>
<th>it (U_2)</th>
<th>Bob (U_2)</th>
<th>John (U_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>strict number</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>compatible number</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>strict gender</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>compatible gender</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>sentence distance</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hobbs distance</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>grammatical role</td>
<td>subject</td>
<td>object</td>
<td>PP</td>
<td>subject</td>
</tr>
<tr>
<td>linguistic form</td>
<td>pronoun</td>
<td>pronoun</td>
<td>proper</td>
<td>proper</td>
</tr>
</tbody>
</table>
General Coreference Resolution

• Victoria Chen, CFO of Megabucks Banking Corp since 2004, saw her pay jump 20%, to $1.3 million, as the 37-year-old also became the Denver-based company’s president. It has been ten years since she came to Megabucks from rival Lotsalooot.

• Should give 4 coreference chains:
 – {Victoria Chen, CFO of Megabucks Banking Corp since 2004, her, the 37-year-old, the Denver-based company’s president, she}
 – {Megabucks Banking Corp, the Denver-based company, Megabucks}
 – {her pay}
 – {Lotsalooot}
General Coreference Resolution

• Can use a classifier to classify each pair of NPs as coreferent or not, trained from labelled corpus
• All the earlier features, plus:
 – anaphor edit distance
 – antecedent edit distance
 – alias (rule-based, per type, using NE tagger)
 – appositive
 – linguistic form: proper, def, indef, pronoun
• Combine best: ENCORE (Bo Lin et al 2010)
• ML for Cross-Doc Coref (Rushin Shah et al 2011)
Questions?
\[
S \rightarrow NP \ VP \\
NP \rightarrow \{ (\text{Det}) \ Nominal \ (\{ PP \})^* \} \\
Det \rightarrow \{ \text{determiner} \ NP \ 's \} \\
PP \rightarrow \text{preposition} \ NP \\
Nominal \rightarrow \text{noun} \ (PP)^* \\
Rel \rightarrow \text{wh-word} \ S \\
VP \rightarrow \text{verb} \ NP \ (PP)^*
\]
Evaluating Coreference Resolution

• B-CUBED:
 – Human-labelled “true” coreference chains
 – Compare hypothesis chains with true chains
 – Compute Precision and Recall for all entities, weighting each entity:
 • P: $\sum_{i=1}^{N} w_{i} \frac{\# \text{correct in hypo chain containing entity } i}{\# \text{all in hypo chain containing } i}$
 • R: $\sum_{i=1}^{N} w_{i} \frac{\# \text{correct in hypo chain containing entity } i}{\# \text{all in ref chain containing } i}$

• Or, don’t use a gold-standard: CONE (Bo Lin et al 2010)
• Truth: \{E1-E5\},\{E6,E7\},\{E8-E12\}
• Hypo1: \{E1-E5\},\{E6-E12\}
• Hypo2: \{E1-E5\},\{E8-E12\},\{E6,E7\}

• Precision-oriented weighting:
 • weight is \(1/(\text{number-of-entities})\)
 H1: \(P = \frac{1}{12} \times ((\frac{5 \times 5}{5})+(\frac{2 \times 2}{7})+(\frac{5 \times 5}{7})) = 0.76\)
 H2: \(P = \frac{1}{12} \times ((\frac{5 \times 5}{10})+(\frac{2 \times 2}{2})+(\frac{5 \times 5}{10})) = 0.58\)

• Class-balancing weighting:
 • weight is \(1/(\text{chains-in-hypo} \times \text{length-hypo} \times \text{chain-of-entity})\)
 H1: \(P = (\frac{1}{10}(\frac{5 \times 5}{5})+\frac{1}{14}(\frac{2 \times 2}{7})+\frac{1}{14}(\frac{5 \times 5}{7})) = 0.796\)
 H2: \(P = (\frac{1}{20}(\frac{5 \times 5}{10})+\frac{1}{4}(\frac{2 \times 2}{2})+\frac{1}{20}(\frac{5 \times 5}{10})) = 0.75\)

• (from B-CUBED paper, Baldwin et al)