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Privacy and Anonymity

Being on-line without giving up everything about you
Ensuring collected data doesn’t reveal its users data
Privacy in

 Structured Data: k-anonymity, differential privacy
 Text: obfusticating authorship
 Speech: speaker id and de-identification
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Companies Getting Your Data

They actually don’t want your data, they want to upsell
 They want to be able to do tasks (recommendations)
 They actually don’t care about the individual you

Can they process data to never have identifiable content
 Cumulated statistics
 Averages, counts, for classes

How many examples before it is anonymous
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k-anonymity

Latanya Sweeney and Pierangela Samarati 1998
Given some table for data with features and values
Release data that guarantees individuals can’t be identified

 Suppresion: Delete entries that are too “unique”
 Generalization: relax specificness of fields, 
                            e.g. age to age-range or city to region
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k-anonymity

From wikipedia: K-anonymity
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k-anonymity

From wikipedia: K-anonymity
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k-anonymity

But if X is in the dataset you do know they have a disease
You can set “k” to something thought to be unique enough
Making a dataset  “k-anonymous” is NP-Hard
But it is a measure of anonymity for a data set
Is there a better way to hide identification?
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Differential Privacy

Maximize statistical queries, minimize identification
When asked about feature x for record y

 Toss a coin: if heads give right answer
 If tails: throw coin again, answer yes if heads, no if tails

Still has accuracy at some level of confidence
Still has privacy at some level of confidence



11-830 Computational Ethics for NLP 

Authorship Obfustication

Remove most identifiable words/n-grams
 “So” → “Well”,  “wee” -> “small”, “If its not too much trouble” → “do it”

Reddy and Knight 2016
 Obfusticating Gender in Social Media Writing
 “omg I’m soooo excited!!!”
 “dude I’m so stoked”
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Authorship Obfustication

Most gender related words (Reddy and Knight 16)
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Authorship Obfustication

Learning substitutions
 Mostly individual words/tokens
 Spelling corrections “goood” → “good”
 Slang to standard “buddy” → “friend”
 Changing punctuation

But
 Although it obfusticates, a new classifier might still identify differences
 It really only does lexical substitutions (authorship is more complex)
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Speaker ID

 Your speech is as true as a photograph
 Synthesis can (often) fake your voice
 Court case authentication

 (usually poor recording conditions)
 Human experts vs Machines

 Probably records exist for all your voices
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Who is speaking?

 Speaker ID, Speaker Recognition
 When do you use it

 Security, Access
 Speaker specific modeling

 Recognize the speaker and use their options
 Diarization

 In multi-speaker environments
 Assign speech to different people
 Allow questions like did Fred agree or not.
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Voice Identity

 What makes a voice identity
 Lexical Choice: 

 Woo-hoo, 
 I’ll be back ...

 Phonetic choice
 Intonation and duration
 Spectral qualities (vocal tract shape)
 Excitation
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Voice Identity

 What makes a voice identity
 Lexical Choice: 

 Woo-hoo, 
 I’ll be back …

 Phonetic choice
 Intonation and duration
 Spectral qualities (vocal tract shape)
 Excitation

 But which is most discriminative?
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GMM Speaker ID 

 Just looking at spectral part
 Which is sort of vocal tract shape

 Build a single Gaussian of MFCCs
 Means and Standard Deviation of all speech
 Actually build N-mixture Gaussian (32 or 64)

 Build a model for each speaker
 Use test data and see which model its closest to



11-830 Computational Ethics for NLP 

GMM Speaker ID

 How close does it need to be?
 One or two standard deviations?

 The set of speakers needs to be different
 If they are closer than one or two stddev
 You get confusion.

 Should you have a “general” model
 Not one of the set of training speakers
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GMM Speaker ID

 Works well on constrained tasks
 In similar acoustic conditions
 (not telephone vs wide-band)
 Same spoken style as training data
 Cooperative users

 Doesn’t work well when
 Different speaking style (conversation/lecture)
 Shouting whispering
 Speaker has a cold
 Different language
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Speaker ID Systems

 Training
 Example speech from each speaker
 Build models for each speaker
 (maybe an exception model too)

 ID phase
 Compare test speech to each model
 Choose “closest” model (or none)
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Basic Speaker ID system
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Accuracy

 Works well on smaller sets
 20-50 speakers

 As number of speakers increase
 Models begin to overlap – confuse speakers

 What can we do to get better distinctions
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What about transitions

 Not just modeling isolated frames
 Look at phone sequences
 But ASR

 Lots of variation
 Limited amount of phonetic space

 What about lots of ASR engines
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Phone-based Speaker ID

 Use *lots* of ASR engines
 But they need to be different ASR engines

 Use ASR engines from lots of different languages
 It doesn’t matter what language the speech is
 Use many different ASR engines
 Gives lots of variation

 Build models of what phones are recognized 
 Actually we use HMM states not phones
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Phone-based SID (Jin)
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Phone-based Speaker ID

 Much better distinctions for larger datasets
 Can work with 100 plus voices
 Slightly more robust across styles/channels
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But we need more …

 Combined models
 GMM models
 Ph-based models
 Combine them
 Slightly better results

 What else …
 Prosody (duration and F0)
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Can VC beat Speaker-ID

 Can we fake voices?
 Can we fool Speaker ID systems?
 Can we make lots of money out of it?

 Yes, to the first two
 Jin, Toth, Black and Schultz ICASSP2008
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Training/Testing Corpus

 LDC CSR-I (WSJ0)
 US English studio read speech 
 24 Male speakers
 50 sentences training, 5 test 
 Plus 40 additional training sentences
 Sentence average length is 7s.

 VT Source speakers
 Kal_diphone (synthetic speech)
 US English male natural speaker (not all sentences)
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Experiment I

 VT GMM
 Kal_diphone source speaker
 GMM train 50 sentences
 GMM transform 5 test sentences

 SID GMM
 Train 50 sentences
 (Test natural 5 sentences, 100% correct)
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GMM-VT vs GMM-SID

Hello
 VT fools GMM-SID 100% of the time
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GMM-VT vs GMM-SID

 Not surprising (others show this)
 Both optimizing spectral properties

 These used the same training set
 (different training sets doesn’t change result)

 VT output voices sounds “bad”
 Poor excitation and voicing decision

 Human can distinguish VT vs Natural
 Actually GMM-SID  can distinguish these too
 If VT included in training set
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GMM-VT vs Phone-SID

 VT is always S17, S24 or S20
 Kal_diphone is recognized as S17 and S24
 Phone-SID seems to recognized source speaker
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and Synthetic Speech?

 Clustergen: CG
 Statistical Parametric Synthesizer
 MLSA filter for resynthesis

 Clunits: CL
 Unit Selection Synthesizer
 Waveform concatenation
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Synth vs GMM-SID

 Smaller is better
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Synth vs Phone-SID

 Smaller is better
 Opposite order from GMM-SID
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Conclusions

 GMM-VT fools GMM-SID
 Ph-SID can distinguish source speaker

 Ph-SID cares about dynamics
 Synthesis (pretty much) fools Ph-SID

 We’ve not tried to distinguish Synth vs Real
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Future

 Much larger dataset
 250 speakers (male and female)
 Open set (include background model)
 WSJ (0+1)

 Use VT with long term dynamics
 HTS adaptation
 articulatory position data
 Prosodics (F0 and duration)

 Use ph-SID to tune VT model
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Future II

 VT that fools Ph-SID
 Develop X-SID (prosody?)

 Develop X-VT that fools X-SID
 Develop X2-SID

 Develop X2-VT that fools …

    …..
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De-identification

 Using Speaker ID to score de-identification
 Reverse of voice transformation

 Masking source, rather than being like target

 Simplest view
 Full ASR and TTS in new engine (two hard)

 Voice conversion to synthetic voice
 Natural speech to TTS (kal_diphone)
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De-identification

 Morph your voice to something else
 Use voice conversion technology
 Mostly works (for spectral/phonetic 

information)
 But what about words?
 But what about timing/location/source
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Future

 Advisorial Development
 ID, counter-ID, better ID, better counter-ID

 Evolution is a very strong function
 De-identification hides your voice

 But hides the others’ voices too

 We could just end up with the best bot
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Always Listening ... 
 Google Glass, Amazon Echo

 Looks for keyword …
 So listens all the time
 (But doesn't upload to the cloud, probably)

 What happens to the data I give up
 Sentences do get uploaded.
 (Probably) protected partially

 What about hackers:
 Malicious, legal and “legal”
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So we're doomed!

 Can we have web services and privacy?
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So we're doomed!

 Can we have web services and privacy?
 Maybe ...
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Homomorphic Encryption

 Doing Arithmetic in the Encrypted domain.
 For example:

 Electronic voting
 Summing bank account values

 Pass the encrypted cumulated values
 Sum them in the encrypted domain
 st. unencrypt(a')+unencrypt(b') =

        unencrypt(a' “+” b')
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Homomorphic Encryption

 No unencrypted data is given to the server
 e.g. 

 HIPAA requirements:
 ASR without revealing the content

 Can search encrypted calls from Terrorist without 
(unencrypted) access to non-Terrorist calls

 Can still update general models (ish)
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Homomorphic Encryption

 Privacy Preserving Speech Processing 
(Manas Pathak 2012)

 Keyword spotting and HMM Recognition
 Great, where can I download it ...
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Homomorphic Encryption

 Privacy Preserving Speech Processing 
(Manas Pathak 2012)

 Its computational very expensive
 (300-3000 times slower)
 It requires transfer of much more data
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So We’re Saved

 Maybe:

 We have to trust the makers for cryptography

 We have to do develop new anticryptography

 We have to be vigilant
– (dont check your private keys into github)
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