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What are the biases in our data?

Why do they matter?

What can we do about them?
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Humans, machines and high-stakes predictions
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Humans, machines and high-stakes predictions

Data

Machine prediction

Human decision

Machines are better than humans at making predictions!
[Meehl’54, Dawes’89, Grove’00]
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Humans, machines and high-stakes predictions

Data

Machine prediction

Human decision

But what happens when available data embeds societal biases?
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What are the risks of semantic representation bias?

Input data Semantic representation Machine learning 
algorithm

In this talk...
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Word embeddings
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Word embeddings
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Embedding geometry: proximity and parallelism
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Word embeddings

What are the biases in my 
word embedding?

(beyond gender bias)

Credit: Adam Kalai
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Implicit Association Test 
[Greenwald’98]
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Implicit Association Test 
[Greenwald’98]
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Implicit Association Test 
[Greenwald’98]

Differences in average response time between setting 1 and setting 2?
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Word embedding Association Test 
[Caliskan et al, 2017]
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Word embedding Association Test 
[Caliskan et al, 2017]
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Differences in average distances between groups of words?
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X1

X2

A1 A2

1. Which sets X1, X2, A1, A2 should we consider?

2. How to deal with the combinatorial explosion that arises when considering intersectional groups?

Word embedding Association Test 
[Caliskan et al, 2017]
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X1

X2

A1 A2

Is bias X in my word embedding?
[Caliskan’17]

What are the biases in my word embedding?
[Swinger* and De-Arteaga* et al, AIES, 2019]

Unsupervised bias enumeration

Word embedding Association Test 
[Caliskan et al, 2017]
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Generalized Word embedding Association Test 
[Swinger* and De-Arteaga* et al, 2018]
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n=2

Generalized Word embedding Association Test 
[Swinger* and De-Arteaga* et al 2018]
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n=1

Generalized Word embedding Association Test 
[Swinger* and De-Arteaga* et al 2018]
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n>1
(decomposition)

Generalized Word embedding Association Test 
[Swinger* and De-Arteaga* et al 2018]
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Unsupervised Bias Enumeration (UBE) algorithm

Copyright © 2019 Maria De-Arteaga



Input

Attributes

Copyright © 2019 Maria De-Arteaga



Step 1: Discover groups
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Step 2: Discover word categories
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Step 2: Discover word categories
Copyright © 2019 Maria De-Arteaga



Step 3: Partition Aj 
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Step 3: Partition Aj 
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Step 3: Partition Aj 
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X3
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A1,j

Ai,j contains top t words s.t. 
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X1

X2
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Is Ai,j significantly closer to Xi than it 
could be expected through sheer 
randomness? 

Step 4: Establish statistical significance
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Step 4: Establish statistical significance
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Xi

Step 4: Establish statistical significance

Ai.j

A

Is 𝝈i,j significantly large? 
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Step 4: Establish statistical significance
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Rotational null hypothesis

1. Rotate X: X → XUr
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Step 4: Establish statistical significance
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Step 4: Establish statistical significance
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Rotational null hypothesis
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Step 4: Establish statistical significance

Ai.j

A

XiU

Rotational null hypothesis

3. Calculate p-value:

pi,j  = [ 𝛅(𝞼i,j > 𝞼i,j,r) + 1]  / [ R + 1]

r = 1,2,...,10k
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Step 4: Establish statistical significance

Ai.j

A

XiU

Rotational null hypothesis

4. Determine critical p-value, 𝞪-bound guarantee on 
false discovery rate (Benjamini-Hochbergh)
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Disclaimer

The biases in the following slides contain offensive stereotypes.

These do not reflect our views.
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Crowdsourcing evaluation
Qualification: 

36 names, 3 per group 
+1 per name labeled in correct group
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Crowdsourcing evaluation
Qualification: 

36 names, 3 per group 
+1 per name labeled in correct group

If accuracy > 50%

Is the UBE output consistent with society's stereotypes?
For each WEAT:

• Groups in output {X1, X2, … , Xk} and {A1, A2, …, Ak} shown
• For each name group Xi, which group Ai contains words most stereotypically 

associated with these names?
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Crowdsourcing evaluation
Qualification: 

36 names, 3 per group 
+1 per name labeled in correct group

If accuracy > 50%

Is the UBE output consistent with society's stereotypes?
For each WEAT:

• Groups in output {X1, X2, … , Xk} and {A1, A2, …, Ak} shown
• For each name group Xi, which group Ai contains words most stereotypically 

associated with these names?

Is it offensive? Rate:

If most commonly chosen group 
matches UBE pairing

Politically incorrect, possibly 
very offensive

Politically correct, 
inoffensive, or just random

1 2 3 4 5 6 7
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Crowdsourcing evaluation
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Disclaimer

The biases in the following slides contain offensive stereotypes.

These do not reflect our views or the views of crowd workers.

Copyright © 2019 Maria De-Arteaga



Crowdsourcing evaluation

*These associations do not reflect our views or those of the crowd workers.
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Why does this matter?

● Representational harms

● Harmful bias encoded in semantic representation used for learning

● Removing names is not enough to get rid of bias!

○ Words in category clusters may be used as proxy for gender/race/etc

Hostess Cab driver

volleyball cornerback
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What are the risks of semantic representation bias?
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Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting (FAT* 2019)
Maria De-Arteaga (CMU), Alexey Romanov (UMASS), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian 
Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), 
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An artificially intelligent headhunter?

77
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Can we quantify the risks of incorporating ML in 
hiring and recruiting pipelines?

80
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Can we characterize the effects?

Can we quantify the risks of incorporating ML in 
hiring and recruiting pipelines?
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Can we characterize the effects?

Can we quantify the risks of incorporating ML in 
hiring and recruiting pipelines?

Our findings:
● Gender accuracy gap in large-scale study

● “Scrubbing” gender indicators ≠ gender blindness 
● Compounding imbalances
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Computer Programmer

83
Slide created by Adam Kalai



Computer Programmer

84
Slide created by Adam Kalai



Computer Programmer

85
Slide created by Adam Kalai



Computer Programmer
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Computer Programmer

87
Slide created by Adam Kalai



88

Copyright © 2019 Maria De-Arteaga



Bias in bios: Biographies dataset

● 400,000 third-person web bios from Common Crawl.

“Xxx Xxx is a(n) (xxx) [title]...he/she…” title ∈ {common BLS SOC titles}

Alexandra Chouldechova is an Assistant Professor of Statistics and Public Policy at 
Carnegie Mellon University's Heinz College of Informations Systems and Public 
Policy. She received her B.Sc. from the University of Toronto in 2009, and in 2014 
she completed her Ph.D. in Statistics at Stanford University. While at Stanford, she 
also worked at Google and Symantec on developing statistical assessment 
methods for information retrieval systems.  

● Classification problem: 28 title-from-bio-text 
89
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400k total bios
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Learning pipeline

Input data:
Biographies

Semantic representations:

1. Bag-of-words
2. Word embedding

3. Deep neural network 
(GRU) with attention

Objective:
Predict Y = Occupation

91
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Gender sensitivity: How do predictions change 
if explicit gender indicators are swapped?

[Bertrand, Mulliainathan’04]
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Beyond explicit gender indicators: the gender accuracy gap

96
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Compounding 
gender imbalance

Compounding 
imbalance

If female fraction p < 0.5 and gender gap < 0 for title, 
then female fraction in true positives < p
(similarly for males)
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Compounding 
gender imbalance

Compounding 
injustice

[Hellman’18]

If initial imbalance constitutes injustice: Model’s 
prediction is informed by, and compounds, previous 
injustice
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Compounding imbalances

Surgeons

females in data: 

14.6%
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Males:
71% recall
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Compounding imbalances

Males:
71% recall

Females:
54% recall

females in data: 

14.6%

Surgeons

females in true positives: 

11.6%
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≈ same accuracy
with/without 
explicit gender indicators

“Scrub” explicit gender indicators?

104
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Compounding imbalances
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Can we mitigate this problem?

● Additional challenges:

○ Sensitive attributes may be unavailable, or it may be illegal to use them

○ Need to consider several attributes and their intersection

➢ Race, gender, ethnicity, . . .
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What are the risks of semantic representation bias?

In this talk...

                                    Part 3: Mitigating allocative harms

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (NAACL 2019)
Alexey Romanov (UMASS), Maria De-Arteaga (CMU), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian 
Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Anna 
Rumshisky (UMASS), Adam Kalai (MSR) Best Thematic Paper :)
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Names encode societal biases, and…

"What's in a name? That which we call a rose

By any other name would smell as sweet."

William Shakespeare, Romeo and Juliet
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Main idea

● Leverage biases presented in word embeddings
○ Use embeddings of names as “universal proxies” 

○ No need to define protected groups

● Embeddings are used only in the loss calculation 
○ No need for names or protected attributes during 

deployment

○ Gains extend to individuals who are poorly proxied

Credit: Alexey Romanov



Names are indeed “universal proxies”



Algorithms: regularize accuracy gaps
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Algorithms: regularize accuracy gaps
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UCI Adult dataset
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● Unsupervised bias enumeration algorithm for word embeddings

○ Problematic societal biases encoded in widely used embeddings

● Link between accuracy gap and compounding injustices

● Large-scale dataset of online bios for occupation classification*

○ Gender imbalance compounded, even if explicit indicators “scrubbed”

● Bias in word embeddings can be leveraged to mitigate bias without access to 
protected attributes

Summary

*Code to reproduce dataset publicly available: aka.ms/biasbios 119
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we now have some 
results for Spanish!



Thanks!

mdeartea@andrew.cmu.edu


