Bias in bios: fairness in a high-stakes machine-learning setting

Maria De-Arteaga

Joint PhD Student, Machine Learning & Public Policy

Advisors: Artur Dubrawski & Alexandra Chouldechova

Carnegie Mellon University Heinzcollege

Alexey Romanov

Adam Kalai

Hanna Wallach

Jennifer Chayes

Christian borgs

Alexandra Chouldechova

Krishnaram

Kenthapadi

Sahin Geyik

Max Leiserson

Nathaniel Swinger, Neil Thomas Heffernan IV

What are the biases in our data?

Why do they matter?

What can we do about them?

What are the biases in my data?

What are the biases in my word embedding? (AIES 2019) Nathaniel Swinger⁼ (Lexington HS), <u>Maria De-Arteaga</u>⁼ (CMU), Neil Thomas Heffernan IV (Shrewsbury HS), Mark Leiserson (UMD), Adam Kalai (MSR)

Why do they matter?

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting (FAT* 2019) <u>Maria De-Arteaga</u> (CMU), Alexey Romanov (UMASS), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Adam Kalai (MSR)

What can we do about them?

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (NAACL 2019) Alexey Romanov (UMASS), <u>Maria De-Arteaga</u> (CMU), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Anna Rumshisky (UMASS), Adam Kalai (MSR) Best Thematic Paper :)

Humans, machines and high-stakes predictions

Humans, machines and high-stakes predictions

Machines are better than humans at making predictions! [Meehl'54, Dawes'89, Grove'00]

Humans, machines and high-stakes predictions

But what happens when available data embeds societal biases?

What are the risks of semantic representation bias?

What are the risks of semantic representation bias?

Part 1: Representational harms

What are the biases in my word embedding? (AIES 2019) Nathaniel Swinger⁼ (Lexington HS), <u>Maria De-Arteaga</u>⁼ (CMU), Neil Thomas Heffernan IV (Shrewsbury HS), Mark Leiserson (UMD), Adam Kalai (MSR)

What are the risks of semantic representation bias?

Part 2: Allocative harms

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting (FAT* 2019) <u>Maria De-Arteaga</u> (CMU), Alexey Romanov (UMASS), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Adam Kalai (MSR)

What are the risks of semantic representation bias?

Part 3: Mitigating allocative harms

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (NAACL 2019) Alexey Romanov (UMASS), <u>Maria De-Arteaga</u> (CMU), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Anna Rumshisky (UMASS), Adam Kalai (MSR) <u>Best Thematic Paper :</u>)

1	A	В	С	D	E	F	G	Н	1	J	ĸ	L
1	the	0.056	0.043	0.051	0.08	0.006	0.041	0.032	0.011	0.057	0.004	0.08
2	cat	0.072	0.076	0.1	0.085	0.055	0.082	0.058	0.017	0.011	0.062	0.02
3	dog	0.088	0.099	0.028	0.059	0.06	0.059	0.039	0.09	0.001	0.031	0.07:
4	nurse	0.03	0.018	0.058	0.074	0.055	0.028	0.025	0.054	0.094	0.052	0.093
5	doctor	0.097	0.093	0.035	0.057	0.044	0.052	0.046	0.055	0.072	0.055	0.03
6	king	0.013	0.059	0.024	0.032	0.038	0.078	0.052	0.067	0.05	0.087	0.033
7	queen	0.087	0.072	0.029	0.042	0.05	0.083	0.095	0.012	0.098	0.009	0.076
8	hird	0.042	0.044	0.006	0.003	0.003	0.082	0.034	0.024	0.003	0.05	0.0

Slide created by Adam Kalai

Man :: computer programmer

Woman ::

1	A	B	С	D	E	F	G	Н	1	J	K	L
1	the	0.056	0.043	0.051	0.08	0.006	0.041	0.032	0.011	0.057	0.004	0.083
2	cat	0.072	0.076	0.1	0.085	0.055	0.082	0.058	0.017	0.011	0.062	0.02
3	dog	0.088	0.099	0.028	0.059	0.06	0.059	0.039	0.09	0.001	0.031	0.07:
4	nurse	0.03	0.018	0.058	0.074	0.055	0.028	0.025	0.054	0.094	0.052	0.093
5	doctor	0.097	0.093	0.035	0.057	0.044	0.052	0.046	0.055	0.072	0.055	0.03
6	king	0.013	0.059	0.024	0.032	0.038	0.078	0.052	0.067	0.05	0.087	0.033
7	queen	0.087	0.072	0.029	0.042	0.05	0.083	0.095	0.012	0.098	0.009	0.07
8	hird	0.042	0.044	0.006	0.003	0.003	0.082	0.034	0.024	0.003	0.05	0.0

Slide created by Adam Kalai

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

1	A	В	С	D	E	F	G	н	1	J	K	L
1	the	0.056	0.043	0.051	0.08	0.006	0.041	0.032	0.011	0.057	0.004	0.08
2	cat	0.072	0.076	0.1	0.085	0.055	0.082	0.058	0.017	0.011	0.062	0.02
3	dog	0.088	0.099	0.028	0.059	0.06	0.059	0.039	0.09	0.001	0.031	0.07
4	nurse	0.03	0.018	0.058	0.074	0.055	0.028	0.025	0.054	0.094	0.052	0.09
5	doctor	0.097	0.093	0.035	0.057	0.044	0.052	0.046	0.055	0.072	0.055	0.0
6	king	0.013	0.059	0.024	0.032	0.038	0.078	0.052	0.067	0.05	0.087	0.03
7	queen	0.087	0.072	0.029	0.042	0.05	0.083	0.095	0.012	0.098	0.009	0.07
8	hird	0.042	0.044	0.006	0.003	0.003	0.082	0.034	0.024	0.003	0.05	0.0

Embedding geometry: proximity and parallelism

nurse ('nərs) n., pl., -s **1.** A woman trained to care for the sick or infirm, especially in a hospital.

computer programmer (kəm'pju:tə 'prəʊgræmə) n., pl., -s 1. A man who writes programs for the operation of computers, especially as an occupation.

BAD because compounds biases

Slide created by Adam Kalai

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

1	A	В	С	D	E	F	G	н	11	J	к	L
1	the	0.056	0.000	0.051	0.08	0.006	0.041	0.032	0.011	0.057	0.004	0.083
2	cat	0.072	0.000	0.1	0.085	0.055	0.082	0.058	0.017	0.011	0.062	0.02
3	dog	0.088	0.000	0.028	0.059	0.06	0.059	0.039	0.09	0.001	0.031	0.07:
4	nurse	0.03	0.000	0.058	0.074	0.055	0.028	0.025	0.054	0.094	0.052	0.093
5	doctor	0.097	0.000	0.035	0.057	0.044	0.052	0.046	0.055	0.072	0.055	0.03
6	king	0.013	0.000	0.024	0.032	0.038	0.078	0.052	0.067	0.05	0.087	0.033
7	queen	0.087	0.000	0.029	0.042	0.05	0.083	0.095	0.012	0.098	0.009	0.076
8	bird	0.042	0.000	0.006	0.003	0.003	0.082	0.034	0.024	0.003	0.05	0.0

Slide created by Adam Kalai

What are the biases in my word embedding? (beyond gender bias)

Credit: Adam Kalai

Implicit Association Test [Greenwald'98]

Implicit association between categories?

Implicit Association Test [Greenwald'98]

Implicit association between categories?

[Greenwald'98]

Female

Setting 1

Career

Family

Male

[Greenwald'98]

Female

Career

Male

Family

Salary

[Greenwald'98]

Female

Career

Male

Family

Paul

[Greenwald'98]

Female

Career

Male

Family

Emily

[Greenwald'98]

Female

Career

Male

Family

Wedding

[Greenwald'98]

Female

Setting 2

Family

Career

Male

[Greenwald'98]

Female

Family

Male

Career

Salary

[Greenwald'98]

Female

Family

Male

Career

Emily

[Greenwald'98]

Female

Family

Male

Career

Wedding

[Greenwald'98]

Female

Family

Male

Career

John

[Greenwald'98]

Differences in average response time between **setting 1** and **setting 2**?

Word embedding Association Test

[Caliskan et al, 2017]

Word embedding Association Test

[Caliskan et al, 2017]

Word embedding Association Test

[Caliskan et al, 2017]

- 1. Which sets X_1 , X_2 , A_1 , A_2 should we consider?
- 2. How to deal with the combinatorial explosion that arises when considering intersectional groups?

Word embedding Association Test

[Caliskan et al, 2017]

Is bias X in my word embedding? [Caliskan'17]

What are the biases in my word embedding? [Swinger* and De-Arteaga* et al, AIES, 2019]

Unsupervised bias enumeration

[Swinger* and De-Arteaga* et al, 2018]

$$g(X_1, A_1, \dots, X_n, A_n) \stackrel{\text{def}}{=} \sum_{i=1}^n (\overline{X}_i - \mu) \cdot (\overline{A}_i - \overline{A})$$

where $\mu \stackrel{\text{def}}{=} \begin{cases} \overline{\mathcal{X}} & \text{for } n = 1, \\ \sum_i \overline{X}_i / n & \text{for } n \ge 2. \end{cases}$

[Swinger* and De-Arteaga* et al 2018]

$$g(X_1, A_1, \dots, X_n, A_n) \stackrel{\text{def}}{=} \sum_{i=1}^n (\overline{X}_i - \mu) \cdot (\overline{A}_i - \overline{A})$$

where $\mu \stackrel{\text{def}}{=} \begin{cases} \overline{\mathcal{X}} & \text{for } n = 1, \\ \sum_i \overline{X}_i / n & \text{for } n \ge 2. \end{cases}$

n=2 \longrightarrow Lemma 1. For any $X_1, X_2 \subseteq \mathcal{X}$ of equal sizes $|X_1| = |X_2|$ and any nonempty $A_1, A_2 \subseteq \mathcal{A}$, $s(X_1, A_1, X_2, A_2) = 2|X_1| g(X_1, A_1, X_2, A_2)$

[Swinger* and De-Arteaga* et al 2018]

$$g(X_1, A_1, \dots, X_n, A_n) \stackrel{\text{def}}{=} \sum_{i=1}^n (\overline{\boldsymbol{X}}_i - \boldsymbol{\mu}) \cdot (\overline{\boldsymbol{A}}_i - \overline{\boldsymbol{\mathcal{A}}})$$

where $\boldsymbol{\mu} \stackrel{\text{def}}{=} \begin{cases} \overline{\boldsymbol{\mathcal{X}}} & \text{for } n = 1, \\ \sum_i \overline{\boldsymbol{X}}_i / n & \text{for } n \ge 2. \end{cases}$

Lemma 1. For any $X_1, X_2 \subseteq \mathcal{X}$ of equal sizes $|X_1| = |X_2|$ and any nonempty $A_1, A_2 \subseteq \mathcal{A}$, $s(X_1, A_1, X_2, A_2) = 2|X_1| g(X_1, A_1, X_2, A_2)$

n=1 \longrightarrow Lemma 2. For any nonempty sets $X \subset \mathcal{X}$, $A \subset \mathcal{A}$, let their complements sets $X^c = \mathcal{X} \setminus X$ and $A^c = \mathcal{A} \setminus A$. Then,

$$g(X,A) = 2g(X,A,\mathcal{X},\mathcal{A}) = 2\frac{|X^c|}{|\mathcal{X}|}\frac{|A^c|}{|\mathcal{A}|}g(X,A,X^c,A^c)$$

[Swinger* and De-Arteaga* et al 2018]

$$g(X_1, A_1, \dots, X_n, A_n) \stackrel{\text{def}}{=} \sum_{i=1}^n (\overline{X}_i - \mu) \cdot (\overline{A}_i - \overline{A})$$

where $\mu \stackrel{\text{def}}{=} \begin{cases} \overline{\mathcal{X}} & \text{for } n = 1, \\ \sum_i \overline{X}_i / n & \text{for } n \ge 2. \end{cases}$

Lemma 1. For any $X_1, X_2 \subseteq \mathcal{X}$ of equal sizes $|X_1| = |X_2|$ and any nonempty $A_1, A_2 \subseteq \mathcal{A}$, $s(X_1, A_1, X_2, A_2) = 2|X_1| g(X_1, A_1, X_2, A_2)$

Lemma 2. For any nonempty sets $X \subset \mathcal{X}$, $A \subset \mathcal{A}$, let their complements sets $X^c = \mathcal{X} \setminus X$ and $A^c = \mathcal{A} \setminus A$. Then,

$$g(X,A) = 2g(X,A,\mathcal{X},\mathcal{A}) = 2\frac{|X^c|}{|\mathcal{X}|}\frac{|A^c|}{|\mathcal{A}|}g(X,A,X^c,A^c)$$

n>1 \longrightarrow Lemma 3. For any n > 1 and nonempty $X_1, X_2, \dots, X_n \subseteq \mathcal{X}$ and $A_1, A_2, \dots, A_n \subseteq \overline{\mathcal{A}}$, (decomposi $g(X_1, A_1, \dots, X_n, A_n) = \sum_{i \in [n]} g(X_i, A_i) - \sum_{i,j \in [n]} \frac{g(X_i, A_j)}{n}$

Unsupervised Bias Enumeration (UBE) algorithm

	name	meaning	default
	WE	word embedding	w2v
Attributes —	$\rightarrow \chi$	set of names	SSA
	$\frac{n}{n}$	number of target groups	12
	\overline{m}	number of categories	64
	M	number of frequent lower-case words	30,000
	t	number of words per WEAT	3
	α	false discovery rate	0.05

Step 1: Discover groups

w2v F1	w2v F2	w2v F3	w2v F4	w2v F5	w2v F6	w2v F7	w2v F8	w2v F9	w2v F10	w2v F11	w2v F12
Amanda	Janice	Marquisha	Mia	Kayla	Kamal	Daniela	Miguel	Yael	Randall	Dashaun	Keith
Renee	Jeanette	Latisha	Keva	Carsyn	Nailah	Lucien	Deisy	Moses	Dashiell	Jamell	Gabe
Lynnea	Lenna	Tyrique	Hillary	Aislynn	Kya	Marko	Violeta	Michal	Randell	Marlon	Alfred
Zoe	Mattie	Marygrace	Penelope	Cj	Maryam	Emelie	Emilio	Shai	Jordan	Davonta	Shane
Erika	Marylynn	Takiyah	Savanna	Kaylei	Rohan	Antonia	Yareli	Yehudis	Chace	Demetrius	Stan
+581	+840	+692	+558	+890	+312	+391	+577	+120	+432	+393	+494

Step 1: Discover groups

w2v F1	w2vF2	w2v F3	w2v F4	w2v F5	w2v F6	w2v F7	w2v F8	w2v F9	w2v F10	w2v F11	w2v F12
Amanda	Janice	Marquisha	Mia	Kayla	Kamal	Daniela	Miguel	Yael	Randall	Dashaun	Keith
Renee	Jeanette	Latisha	Keva	Carsyn	Nailah	Lucien	Deisy	Moses	Dashiell	Jamell	Gabe
Lynnea	Lenna	Tyrique	Hillary	Aislynn	Kya	Marko	Violeta	Michal	Randell	Marlon	Alfred
Zoe	Mattie	Marygrace	Penelope	Cj	Maryam	Emelie	Emilio	Shai	Jordan	Davonta	Shane
Erika	Marylynn	Takiyah	Savanna	Kaylei	Rohan	Antonia	Yareli	Yehudis	Chace	Demetrius	Stan
+581	+840	+692	+558	+890	+312	+391	+577	+120	+432	+393	+494
98% F	98% F	89% F	85% F	78% F	65% F	59% F	56% F	40% F	27% F	5% F	4% F
1983	1968	1978	1982	1993	1991	1985	1986	1989	1981	1984	1976
4% B	8% B	48% B	10% B	2% B	7% B	4% B	2% B	5% B	10% B	32% B	6% B
4% H	4% H	3% H	9% H	1% H	4% H	9% H	70% H	10% H	3% H	5% H	3% H
3% A	3% A	1% A	11% A	1% A	32% A	4% A	8% A	5% A	4% A	3% A	5% A
89% W	84% W	47% W	69% W	95% W	56% W	83% W	21% W	79% W	83% W	59% W	86% W

Step 1: Discover groups

Step 2: Discover word categories

Step 4: Establish statistical significance

Step 4: Establish statistical significance

$$\sigma_{ij} = (\overline{X}_i - \mu) \cdot (\overline{A}_{ij} - \overline{A})$$

Step 4: Establish statistical significance

$$\sigma_{ij} = (\overline{\boldsymbol{X}}_i - \mu) \cdot (\overline{\boldsymbol{A}}_{ij} - \overline{\boldsymbol{\mathcal{A}}})$$

Is $\sigma_{i,i}$ significantly large?

Step 4: Establish statistical significance

1. Rotate X: $X \rightarrow XUr$

Step 4: Establish statistical significance

2. Find $A_{i,j,r}$

Step 4: Establish statistical significance

3. Calculate $\boldsymbol{\sigma}_{i,j,r}$

Step 4: Establish statistical significance

3. Calculate $\boldsymbol{\sigma}_{i,j,r}$

Step 4: Establish statistical significance

3. Calculate p-value:

$$p_{i,j} = [\delta(\sigma_{i,j} > \sigma_{i,j,r}) + 1] / [R + 1]$$

r = 1,2,...,10k

Step 4: Establish statistical significance

4. Determine critical p-value, *a*-bound guarantee on false discovery rate (*Benjamini-Hochbergh*)

Step 4: Establish statistical significance

Disclaimer

The biases in the following slides contain offensive stereotypes. These do not reflect our views.

98% F 1983 4% B 4% H 89% W 3% A	98% F 1968 8% B 4% H 84% W 3% A	89% F 1978 48% B 3% H 47% W 1% A	85% F 1982 10% B 9% H 69% W 11% A	78% F 1993 2% B 1% H 95% W 1% A	65% F 1991 7% B 4% H 56% W 32% A	59% F 1985 4% B 9% H 83% W 4% A	56% F 1986 2% B 70% H 21% W 8% A	40% 1 1989 5% B 10% 1 79% 7 5% A
	cookbook, baking, baked goods	sweet potatoes, macaroni, green beans			saffron, halal, sweets	mozzarella, foie gras, caviar	tortillas, salsa, tequila	koshe humn bagel
herself, hers, moms	husband, homebound, grandkids	aunt, niece, grandmother	hubby, socialite, cuddle	twin sister, girls, classmate	elder brother, dowry, refugee camp			berea immi emigi
hostess, cheerleader, dietitian	registered nurse, homemaker, chairwoman		supermodel, beauty queen, stripper	helper, getter, snowboarder	shopkeeper, villager, cricketer		translator, interpreter, smuggler	
	log cabin, library, fairgrounds	front porch, carport, duplex	racecourse, plush, tenements	picnic tables, bleachers, concession stand	locality, mosque, slum	prefecture, chalet, sauna		synag const hillto
Copyright ©	2019 Maria De-Arte	pastor,	goddess,		fatwa,	monastery,	rosary,	rabbis

Qualification:

36 names, 3 per group +1 per name labeled in correct group

Emb.	# significant	% accurate	% offensive
w2v	235	72%	35%
fast	160	80%	38%
glove	442	48%	24%
Disclaimer

The biases in the following slides contain offensive stereotypes. These do not reflect our views or the views of crowd workers.

Crowdsourcing evaluation

Emb.	# significant	% accurate	% offensive
w2v	235	72%	35%
fast	160	80%	38%
glove	442	48%	24%

Word2V	ec trained on Google n	ews	fastTe	xt trained on th	he Web	Glo	Ve trained on the	Web
Miguel	Dashaun	Kamal	Marquell	Ahmed	Alejandra	Amina	Alejandra	Kylee
Deisy	Jamell	Nailah	Antwan	Shanti	Maricella	Yair	Epifanio	Shaye
Violeta	Marlon	Kya	Dakari	Mariyah	Ona	Rani	Monalisa	Tayla
Emilio	Davonta	Maryam	Pernell	Siddharth	Fabiola	Danial	Eulalia	Latasha
Yareli	Demetrius	Rohan	Jarred	Yasmin	Sulema	Safa	Alicea	Jessi
illegal immigrant	aggravated robbery	subcontinent	n****	jihad	S*****	turban	cartel	pornstar
drug trafficking	aggravated assault	tribesmen	f****	militants	maid	saree	undocumented	hottie
deported	felonious assault	miscreants	dreads	caliphate	busty	hijab	culpable	nubile

*These associations do not reflect our views or those of the crowd workers.

Why does this matter?

- Representational harms
- Harmful bias encoded in semantic representation used for learning
- Removing names is not enough to get rid of bias!
 - Words in category clusters may be used as proxy for gender/race/etc

In this talk...

What are the risks of semantic representation bias?

Part 2: Allocative harms

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting (FAT* 2019) <u>Maria De-Arteaga</u> (CMU), Alexey Romanov (UMASS), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Adam Kalai (MSR)

An artificially intelligent headhunter?

Get ready, this year your next job interview may be with an A.I. robot

An artificially intelligent headhunter?

interview may be with an A.I. robot

An artificially intelligent headhunter?

Business

Artificial Intelligence Is Coming for Hiring, and It Might Not Be That Bad

Even with all of its problems, AI is a step up from the notoriously biased recruiting process.

Can we **quantify the risks** of incorporating **ML** in **hiring and recruiting pipelines**?

Can we **quantify the risks** of incorporating **ML** in **hiring and recruiting pipelines**?

Can we characterize the effects?

Can we **quantify the risks** of incorporating **ML** in **hiring and recruiting pipelines**?

Can we characterize the effects?

Our findings:

- Gender accuracy gap in large-scale study
- "Scrubbing" gender indicators ≠ gender blindness
 - Compounding imbalances

ρ

83

ρ

Writing solid software for meaningful applications that have a positive impact on the world.

DEVELOPER • MICROSOFT • 2007-2013

Wrote software for cloud platform involving distributed computing, databases, and logging.

LEADERSHIP

Java, Python, C++, SQL,

SOFTBALL TEAM CAPTAIN • SPELMAN COLLEGE • 2003 Led team to division championship, responsible for coordinating

ρ

Java, Python, C++, SQL,

LEADERSHIP

SOFTBALL TEAM CAPTAIN • SPELMAN COLLEGE • 2003 Led team to division championship, responsible for coordinating

Slide created by Adam Kalai

ρ

Slide created by Adam Kalai

ρ

ennifer Tour Chayes is Technical Fellow and Managing Director of Aicrosoft Research New England in Cambridge,

Assachusetts, which she co-founded in 2008, and Microsoft Research New York City, which she co-founded in 2012, and

crosoft Research Montreal since 2017. These three laboratories, re widely renowned interdisciplinary centers, bringing

ata science. Prior to founding these labs, Chayes was Research Area Manager for Mathematics, Theoretical Computer

it 30 patents

Romanov

A Ph.D. Student at UMass

I am currently a second year Ph.D. student at UMass Lowell in the Text-Machine Lab working with Anna Rumshisky, My research interests at this moment are particularly focused on applying Deep Learning methods in Natural Language Processing.

Adam Kalai Principal Researcher

> Contact Info 8. (857) 453-6323 🖭 Email

Microsoft Research Office 12038 Cambridge, MA 02142

Sahin Cem Geyik

Computer Science Department Rensselaer Polytechnic Institute TROY, NY, 12180 email: sahincem² Krishnaram Kenthapadi

Jennifer Chayes

out Projects Publications Videos

ether computer scientists, mathematicians, physicists, social

e, and Cryptography at Microsoft Research Redmond.

the Theory Group. Her research areas include ph

d dynamical properties of large networks, p

papers and the co-inventor o

Krishnaram Kenthapadi is part of the AI team at LinkedIn, where he leads the fairness, transparency, explainability (AETHER) Committee. He shaped the technical roadmap and led the privacy/modeling efforts for LinkedIn Salary intersection of members, recruiters, and career opportunities. Previously, he was a Researcher at Microsoft Researcher Science from Stanford University in 2006, under the supervision of Professor Rajeev Motwani. Before joining Stan

Krishnaram's expertise is in the areas of fairness/transparency/explainability/privacy in AI/ML systems, algorithms 17+ years of experience (including 12+ years in industry after his PhD), working on challenging problems in these I dimess privacy and improved basiness metrics for existing a transfer with a strain of the strain o

About

I have bee fun proble

accessibil

be less bi

Previous

fortunate

Started working at Turn Inc. as an Applied Scientist.

H Website

Mathematics

Christian Borgs About Projects Publications Videos Deputy Managing Director, Microsoft Research New England Massachusett Contact Info Research areas Hanna Wallach Abr Principal Researcher

Contact Info ttt Email () Website V Twitte

studies issues of fairness, accountability, and transparency as they relate to machine learning. Hanna's research has had broad impact in machine learning, natural language processing, and computational social science. In 2014, she was named

Sci

found

structur about

Alexandra Chouldechova Assistant Professor of Statistics and Public Policy Heinz College, Carnegie Mellon University

entists, and biologists, and helping to lay the foundations

aves joined Microsoft Research in 1997, when she co-

transitions in discrete mathematics and computer science.

chanism design, and graph algorithms. She is the co-author of

Office: Hamburg Hall 2224 Email: achould(at)cmu.edu Phone: 412-268-4414

About

Maria De-Arteaga

Alexat C7 Publication

Education

Ph.D. in Statistics, Stanford University, 2014 B.Sc. in Mathematical Statistics, University of Toronto, 2005-2009

Research

My research focuses on problems related to fairness in predictive modeling. I work on better understanding how to assess black-box predictors for potentially unanticipated biases that could lead to discriminatory practices. Questions that I am actively investigating include:

Under what conditions can disparate impact arise?

How can we quantitatively characterize fairness?

How can we use such characterizations to develop improved systems that are less likely to result in disparate impact?

Bias in bios: Biographies dataset

• 400,000 third-person web bios from Common Crawl.

"Xxx Xxx is a(n) (xxx) [title]...he/she..." title ∈ {common BLS SOC titles}

<u>A</u>lexandra <u>C</u>houldechova <u>is an</u> Assistant **Professor** of Statistics and Public Policy at Carnegie Mellon University's Heinz College of Informations Systems and Public Policy. <u>She</u> received <u>her</u> B.Sc. from the University of Toronto in 2009, and in 2014 <u>she</u> completed her Ph.D. in Statistics at Stanford University. While at Stanford, <u>she</u> also worked at Google and Symantec on developing statistical assessment methods for information retrieval systems.

• Classification problem: 28 title-from-bio-text

Learning pipeline

Input data: Biographies

Semantic representations:

- 1. Bag-of-words
- 2. Word embedding
- 3. Deep neural network (GRU) with attention

Objective: Predict Y = *Occupation* **Gender sensitivity**: How do predictions change if explicit gender indicators are swapped? [Bertrand, Mulliainathan'04]

Biases in bios

Enter the bio

She is a fifth year PhD student in the joint Machine Learning and Public Policy program at Carnegie Mellon University's Machine Learning Department and Heinz College. She is co-advised by Prof. Artur Dubrawski and Prof. Alexandra Chouldechova, and she is part of the Auton Lab.

Currently, her main focus is algorithmic fairness, studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support. She is passionate about developing novel machine learning algorithms that are

PREDICT TITLE

she is a fifth year phd student in the joint machine learning and public policy program at carnegie mellon university <unk> s machine learning department and heinz college . she is co-advised by prof. artur <unk> and prof. alexandra chouldechova , and she is part of the auton lab . currently , her main focus is algorithmic fairness , studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support . she is passionate about developing novel machine learning algorithms that are motivated by existing policy problems , and understanding how machine learning can better help us overcome important societal challenges . prior to graduate school she received her b.sc . in mathematics from universidad nacional de colombia and worked as a journalist for one of colombia <unk> s main news magazine , semana . she is the recipient of a microsoft

Copyright © 2019 Maria De-Arteaga

SHE

HE

Biases in bios

$She \rightarrow he$

SHE

HE

Enter the bio

He is a fifth year PhD student in the joint Machine Learning and Public Policy program at Carnegie Mellon University's Machine Learning Department and Heinz College. He is co-advised by Prof. Artur Dubrawski and Prof. Alexandra Chouldechova, and he is part of the Auton Lab.

Currently, his main focus is algorithmic fairness, studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support. He is passionate about developing novel machine learning algorithms that are motivated

REDICT TITLE

he is a fifth year phd student in the joint machine learning and public policy program at carnegie mellon university <unk> s machine learning department and heinz college . he is co-advised by prof. artur <unk> and prof. alexandra chouldechova , and he is part of the auton lab . currently , his main focus is algorithmic fairness , studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support . he is passionate about developing novel machine learning algorithms that are motivated by existing policy problems , and understanding how machine learning can better help us overcome important societal challenges . prior to graduate school he received his b.sc . in mathematics from universidad nacional de colombia and worked as a journalist for one of colombia <unk> s main news magazine , semana . he is the recipient of a microsoft

software_engineer

Biases in bios

Enter the bio

rning Department a	and Heinz College. He is	co-advised by Prof. A	rtur Dubrawski and P	Prof. Alexandra Choulde	echova, and he is pa
y^1	y^2	$\Pi_{\text{female},(y^1,y^2)}$	y^1	y^2	$\Pi_{\text{male},(y^1,y^2)}$
model	rapper	14.7%	attorney	paralegal	7.1%
teacher	pastor	8.5%	architect	interior designer	4.7%
professor	software engineer	6.5%	professor	dietitian	4.3%
professor	surgeon	4.8%	photographer	interior designer	3.5%
physician	surgeon	3.8%	teacher	yoga teacher	3.3%

software_engineer

Beyond explicit gender indicators: the gender accuracy gap

If female fraction p < 0.5 and gender gap < 0 for title, then female fraction in true positives < p (similarly for males)

Compounding injustice [Hellman'18] If initial imbalance constitutes injustice: Model's prediction is informed by, and compounds, previous injustice

Surgeons

females in data: 14.6%

Surgeons

females in data: 14.6%

females in data: **14.6%**

females in true positives: 11.6%

"Scrub" explicit gender indicators?

Copyright © 2019 Maria De-Arteaga

105

Slide created by Adam Kalai

Can we mitigate this problem?

- Additional challenges:
 - Sensitive attributes may be unavailable, or it may be illegal to use them
 - Need to consider several attributes and their intersection
 - ➢ Race, gender, ethnicity, . . .
In this talk...

What are the risks of semantic representation bias?

Part 3: Mitigating allocative harms

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (NAACL 2019) Alexey Romanov (UMASS), <u>Maria De-Arteaga</u> (CMU), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Anna Rumshisky (UMASS), Adam Kalai (MSR) <u>Best Thematic Paper :</u>)

Copyright © 2019 Ivlaria De-Arteaga

Names encode societal biases, and...

"What's in a name? That which we call a rose

By any other name would smell as sweet."

William Shakespeare, Romeo and Juliet

Copyright © 2019 Maria De-Arteaga

Main idea

- Leverage biases presented in word embeddings
 - Use embeddings of names as "universal proxies"
 - No need to define protected groups
- Embeddings are used only in the loss calculation
 - No need for names or protected attributes during deployment
 - Gains extend to individuals who are poorly proxied

Credit: Alexey Romanov

Names are indeed "universal proxies"

(b) Race membership.

Slide created by Alexey Romanov

Algorithms: regularize accuracy gaps

- Training data $x_1, y_1, \dots, x_n, y_n \in X \times \{1, 2, \dots, T\}$
- Model parameters θ , regularization parameter $R \ge 0$
- $\mathcal{L}(\theta)$ = standard misclassification loss, e.g., $-\frac{1}{n}\sum_{i} \log p_{\theta}(y_{i}|x_{i})$
- Minimize $\mathcal{L}(\theta) + R \cdot \mathcal{L}_{\text{CluCL}}(\theta)$
- Cluster constrained loss: cluster names into K groups

•
$$\mathcal{L}_{k,t}(\theta) = \text{group } k \text{ loss for title } t$$

• $\mathcal{L}_{\text{CluCL}}(\theta) = \frac{\sum_{j,k,t} (\mathcal{L}_{j,t}(\theta) - \mathcal{L}_{k,t}(\theta))^2}{TK(K-1)}$

Algorithms: regularize accuracy gaps

- Training data $x_1, y_1, \dots, x_n, y_n \in X \times \{1, 2, \dots, T\}$
- Model parameters θ , regularization parameter $R \ge 0$
- $\mathcal{L}(\theta)$ = standard misclassification loss, e.g., $-\frac{1}{n}\sum_{i}\log p_{\theta}(y_{i}|x_{i})$
- Minimize $\mathcal{L}(\theta) + R \cdot \mathcal{L}_{\text{CoCL}}(\theta)$

• Or balance covariance constrained loss $\mathcal{L}_{CoCL}(\theta) =$

$$\frac{1}{T} \sum_{t} \left\| \mathbf{E}_{i:y_i=t} \left[(v_{\text{name}_i} - \bar{v}_t) \cdot (p(t|x_i) - \bar{p}_t) \right] \right\|$$

Intuition: minimize correlation between errors and name vectors

Slide created by Adam Kalai

Accuracy/fairness tradeoff on UCI Adult dataset

$$\operatorname{Gap}_{r,c}^{\operatorname{RMS}} = \operatorname{IPR}_{r,c} - \operatorname{IPR}_{\sim r,c}$$
$$\operatorname{Gap}_{r}^{\operatorname{RMS}} = \sqrt{\frac{1}{|C|} \sum_{c \in C} \operatorname{Gap}_{r,c}^{2}}$$

Bios dataset

		Root M Gende	1ean Square r Accuracy Gap	Root Mean Square Race Accuracy Gap		
				/		
Model	R	Accuracy Balanced	RMS GAG	RMS RAG	Max GAG	Max RAG
Regular	0	0.788	0.173	0.051	0.511	0.121
CluCL CluCL	1 2	0.784 0.781	0.168 0.165	0.048 0.047	0.494 0.486	0.120 0.114
CoCL CoCL	1 2	0.785 0.779	0.168 0.169	$0.048 \\ 0.048$	0.507 0.512	0.109 0.116

UCI Adult dataset

		Root M Gende	1ean Square r Accuracy Gap	Root Mean Square Race Accuracy Gap		
			\backslash			
Model	R	Accuracy Balanced	RMS GAG	RMS RAG	Max GAG	Max RAG
Regular	0	0.795	0.299	0.120	0.303	0.148
CluCL CluCL	1 2	0.788 0.793	0.278 0.259	0.121 0.085	0.297 0.282	0.145 0.114
CoCL CoCL	1 2	0.794 0.790	0.215 0.163	0.091 0.080	0.251 0.201	0.119 0.109

Slide created by Adam Kalai

Several prominent biases are reduced

(a) The Adult dataset

(b) The Bios dataset, occupation "surgeon"

Slide created by Alexey Romanov

Summary

- Unsupervised bias enumeration algorithm for word embeddings
 - Problematic societal biases encoded in widely used embeddings
- Link between accuracy gap and compounding injustices
- Large-scale dataset of online bios for occupation classification*
 - Gender imbalance compounded, even if explicit indicators "scrubbed"
- Bias in word embeddings can be leveraged to mitigate bias without access to protected attributes

Open problems

Open problems in word embeddings

- Debias contextual word embeddings (e.g., ELMo, BERT)
- · Simultaneously reduce multiple biases in word embeddings
- Are biases in other languages different? -

we now have some results for Spanish!

Open problems in occupation classification

- Generate explainable classifications
- Better understand causes of differences
- Better understand fairness needs, e.g., affirmative action
- Fair candidate ranking

Slide created by Adam Kalai

Thanks!

mdeartea@andrew.cmu.edu