11-830 Computational Ethics for NLP

NLP for Good: Lorelei
Government Investment in Languages

- Language Technologies mostly developed for High Resource Languages
 - English, Spanish, German, Arabic, Mandarin
- What about the other 6995 languages?
 - Maybe 30 have good resources (ASR, Treebanks, Parsers)
- What about those around 300-1000?
 - > 1 Millions speakers, Have media (writing systems)
- If no immediate commercial value no support happens
Government Investment in Languages

- Language Technologies mostly developed for High Resource Languages
 - English, Spanish, German, Arabic, Mandarin
- What about the other 6995 languages?
 - Maybe 30 have good resources (ASR, Treebanks, Parsers)
- What about those around 300-1000?
 - > 1 Millions speakers, Have media (writing systems)
- If no immediate commercial value no support happens
- But
 - Wars and Religions!
 - People will spend money to develop non-commercial support if
 - They want to spread the word, (or stop the word)
US Government LT Investment

• DARPA
 • Invested in MT from 1940s
 • Invested in ASR from 1970s
 • Invested in Dialog systems from 1990s
 • Invested in Speech Translation from 1990s
• Case study Lorelei (2016-2021)
The Scenario

- Disaster happens! (e.g. earthquake)
- Area effected doesn’t use major language
- Communication is in local language
 - News, TV/Radio, Social Media
- What is going on?
 - Where should you provide support
 - Who is affected
 - How many people need help
 - What is the urgency
Lorelei Incident

- Disaster happens! (e.g. earthquake)
- Communication is in local language
 - News, TV/Radio, Social Media
- Provide
 - Machine Translation
 - NER
 - Situation Frames (11 types) plus location, status, urgency, “gravity”
Lorelei Incident

- Disaster happens! (e.g. earthquake)
- Communication is in local language
 - News, TV/Radio, Social Media
- Provide
 - Machine Translation
 - NER
 - Situation Frames (11 types) plus location, status, urgency, “gravity”
- Do this in
 - 24 hours
 - 7 days
 - 30 days
- You are told the language at hour 0
Lorelei Evaluation Exercises

- May 2016: Dry Run (Mandarin)
- July 2016: Uighur (Turkic Language spoken in Western China)
- July 2017: Tigrinya and Oromo (spoken in Eritrea and Ethiopia)
- July 2018: ??? and ???
Lorelei Performers

- Providing complete systems (with components from elsewhere)
- USC/ISI (with UIUC, Notre Dame)
- CMU (with UW, Melbourne and Leidos)
- BBN (with JHU, UPenn)
- Other components
 - Columbia (urgency, sentiment)
 - UTEP (SF from prosody)
Techniques

• Perform in pronunciation space
 • Not words, morphemes or character space
• Cross Lingual Transfer
 • If $w_3_{l_1}$ co-occurs with $w_1_{l_1}$, $w_2_{l_1}$
 • Maybe $w_3_{l_2}$ means $\text{trans}(w_3_{l_1})$ if $\text{trans}(w_1_{l_1}),\text{trans}(w_2_{l_2})$
 • e.g. China, Japan and Korea vs 中国，日本，韓國
• Very Low Resources
 • Religious Texts (Bible, Quran and Unix Manuals)
 • Wikipedia
 • Native Informant (“taxi” driver bilingual for limited time)
Techniques

• Global Linguistic Knowledge
 • High morphology language more likely to be free word order
 • Close language borrowing
 • linguistic/geographic/colonial
 • Uighur numbers are Turkish-like
 • Merci is casual Arabic for “thank you”
 • Pashto (Indic) has many Dari/Farsi lexemes
 • “Petrol” might be called “gas”
• Nothing is spelled consistently
 • The dialects aren’t well defined
 • The registers aren’t well defined
 • People code-mix all the time
Lorelei Advances

- Techniques for low resource languages
 - Translation, interpretation, sentiment
 - Both particular languages, and general techniques
- Machine Learning
 - Better use of limited data
 - Not naive just end-to-end
 - Using large mono-lingual dataset to improve models
 - Using structure to make learning easier
- Helping people get immediate help in earthquakes