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• Does a “compositional” model have the capacity to 
learn the “arbitrariness” that is required? 

• We might think so—RNNs/LSTMs can definitely 
overfit! 

• Will we see better improvements in languages with 
more going on in the morphology?

Compositional words 
Questions
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In analytic languages, the models  
are roughly equivalent.

Dependency parsing 
CharLSTM > Word Lookup
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• Lots of exciting work from a variety of places 

• Google Brain: language models 

• Harvard/NYU (Kim, Rush, Sontag): language models 

• NYU/FB: document representation “from scratch” 

• CMU (me, Cohen, Salakhutdinov): Twitter, 
morphologically rich languages, translation 

• Now for something a bit more controversial…

Character vs. word modeling 
Summary



Structure-aware words

cats

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

c a t 						 STOPSTART s



Structure-aware words

						 STOPSTARTcats

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Would we benefit from a  
more knowledge-rich 

decomposition?

cat +PL



• Rather than assuming a fixed vocabulary, model 
any sequence in       where     is the inventory of 
characters. 

Open Vocabulary LMs 

⌃⇤ ⌃
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Open Vocabulary LM
perplexity per 

word

Characters 18600

Characters 
+Morphs 8165

Characters 
+Words 5021

Characters 
+Words  
+Morphs

4116



• Model performance is essentially equivalent in 
morphologically simple languages (e.g., Chinese, English) 

• In morphologically rich languages (e.g., Hungarian, Turkish, 
Finnish), performance improvements are most pronounced 

• We need far fewer parameters to represent words as 
“compositions” of characters 

• Word and morpheme level information adds additional value 

• Where else could we add linguistic structural 
knowledge?

Character vs. word modeling 
Summary
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Examples adapted from Everaert et al. (TICS 2015)

containing anybody. (This structural configuration is called c(onstituent)-command in the
linguistics literature [31].) When the relationship between not and anybody adheres to this
structural configuration, the sentence is well-formed.

In sentence (3), by contrast, not sequentially precedes anybody, but the triangle dominating not
in Figure 1B fails to also dominate the structure containing anybody. Consequently, the sentence
is not well-formed.

The reader may confirm that the same hierarchical constraint dictates whether the examples in
(4–5) are well-formed or not, where we have depicted the hierarchical sentence structure in
terms of conventional labeled brackets:

(4) [S1 [NP The book [S2 I bought]S2]NP did not [VP appeal to anyone]VP]S1
(5) *[S1 [NP The book [S2 I did not buy]S2]NP [VP appealed to anyone]VP]S1

Only in example (4) does the hierarchical structure containing not (corresponding to the sentence
The book I bought did not appeal to anyone) also immediately dominate the NPI anybody. In (5)
not is embedded in at least one phrase that does not also include the NPI. So (4) is well-formed
and (5) is not, exactly the predicted result if the hierarchical constraint is correct.

Even more strikingly, the same constraint appears to hold across languages and in many other
syntactic contexts. Note that Japanese-type languages follow this same pattern if we assume
that these languages have hierarchically structured expressions similar to English, but linearize
these structures somewhat differently – verbs come at the end of sentences, and so forth [32].
Linear order, then, should not enter into the syntactic–semantic computation [33,34]. This is
rather independent of possible effects of linearly intervening negation that modulate acceptability
in NPI contexts [35].

The Syntax of Syntax
Observe an example as in (6):

(6) Guess which politician your interest in clearly appeals to.

The construction in (6) is remarkable because a single wh-phrase is associated both
with the prepositional object gap of to and with the prepositional object gap of in, as in
(7a). We talk about ‘gaps’ because a possible response to (6) might be as in (7b):

(7) a. Guess which politician your interest in GAP clearly appeals to GAP.
b. response to (7a): Your interest in Donald Trump clearly appeals to Donald Trump

(A) (B)

X X

X X X X

The book  X X X The book           X   appealed to anybody
did not

that I bought appeal to anybody that I did not buy

Figure 1. Negative Polarity. (A) Negative polarity licensed: negative element c-commands negative polarity item.
(B) Negative polarity not licensed. Negative element does not c-command negative polarity item.

734 Trends in Cognitive Sciences, December 2015, Vol. 19, No. 12

Language is hierarchical

The talk

I gave
did not

appeal to anybody

appealed to anybodyThe talk

I did not give
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One theory of hierarchy

• Generate symbols sequentially using an RNN 

• Add some “control symbols” to rewrite the history periodically 

• Periodically “compress” a sequence into a single “constituent” 

• Augment RNN with an operation to compress recent history into a 
single vector (-> “reduce”) 

• RNN predicts next symbol based on the history of compressed 
elements and non-compressed terminals (“push”) 

• RNN must also predict “control symbols” that decide how big 
constituents are 

• We call such models recurrent neural network grammars.
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Syntactic Composition
• Inspired by Socher et al (2011, 2012 …) 

• words and constituents embedded in same space 

• Composition functions designed to 

• capture linguistic notion of headedness  
(LSTMs know what type of head they are looking for 
while they traverse children) 

• support any number of children 

• are learned via backpropagation through structure



• RNNGs jointly model sequences of words together with 
a “tree structure”,  

• Any parse tree can be converted to a sequence of 
actions (depth first traversal) and vice versa (subject to 
wellformedness constraints) 

• We use trees from the Penn Treebank 

• We could treat the non-generation actions as latent 
variables or learn them with RL, effectively making this 
a problem of grammar induction. Future work…

Implementing RNNGs 
Parameter Estimation

p✓(x,y)



• An RNNG is a joint distribution p(x,y) over strings (x) and parse 
trees (y) 

• We are interested in two inference questions: 

• What is p(x) for a given x? [language modeling] 

• What is max p(y | x) for a given x? [parsing] 

• Unfortunately, the dynamic programming algorithms we often 
rely on are of no help here 

• We can use importance sampling to do both by sampling from a 
discriminatively trained model

y

Implementing RNNGs 
Inference
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Perplexity

5-gram IKN 169.3

LSTM + Dropout 113.4

Generative (IS) 102.4

English PTB (LM)

Perplexity

5-gram IKN 255.2

LSTM + Dropout 207.3

Generative (IS) 171.9

Chinese CTB (LM)



This Talk, In a Nutshell
• Facts about language:

• Arbitrariness and compositionality exist at all 
levels 

• Language is sensitive to hierarchy, not strings

• My work’s hypothesis: 
Models designed with these considerations 
structure explicit will outperform models that don’t
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• Augment a sequential RNN with a stack pointer 

• Two constant-time operations 

• push - read input, add to top of stack, connect to current 
location of the stack pointer 

• pop - move stack pointer to its parent 

• A summary of stack contents is obtained by accessing the 
output of the RNN at location of the stack pointer 

• Note: push and pop are discrete actions here  
(cf. Grefenstette et al., 2015)

Implementing RNNGs 
Stack RNNs
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