Vectorization, GPUs,
and CUDA

November 17, 2015

Goals of Today’s Lecture

e Benefits of vectorization
* Understanding GPU architectures

e Crash course in CUDA

Linear regression

y=Wx+Db

Linear regression

y=Wx+Db

Three implementations

Explicit computation

Yij = Zwikl‘kj + b;
k

Note:
¢ ranges over output variables

7 ranges over (training) instances
k ranges over predictors

Linear regression

y=Wx+Db

Three implementations

Explicit computation Single instance

Yij = Zwikl‘kj + b; y; = Wx; +b
k

Note:
¢ ranges over output variables

7 ranges over (training) instances
k ranges over predictors

Linear regression

y=Wx+Db

Three implementations

Explicit computation Single instance Batch

Jij = Y WikTpj + by y; = Wx; +b Y = WX +colwise b
k

Note:
¢ ranges over output variables

7 ranges over (training) instances
k ranges over predictors

L inear Regression Speed

- Four different algorithms

o Explicit computation - CPU (C++ implementation)

e Per-instance vectorization - CPU (Eigen C++ library)

* Per-batch vectorization - CPU (Eigen C++ library)

» Per-batch vectorization - GPU (CUBLAS library)
- Six different problem sizes

o ={256, 512, ..., 16384} (outputs), k=8192 (covariates), /=128 (batch size)
 CPU: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

« GPU: NVIDIA Tesla K40

Implementations

* Explicit computation (CPU)

for (int i = @; 1 < hsize; ++1)
for (int j = 0; j < msize; ++j) {
Y3(1i,J) = b(i);
for (int k = 9; k < xsize; ++k)
Y3(i,j) += W(i,k) * X(k,3);

Implementations

* Explicit computation (CPU)

for (int 1 = ©; 1 < hsize; ++1)
for (int j = 0; j < msize; ++j) {
Y3(1i,J) = b(i);
for (int k = 9; k < xsize; ++k)
Y3(i,j) += W(i,k) * X(k,3);
}

e Per-instance vectorization (CPU)

for (int m = @; m < msize; ++m) {
Y2.col(m) = W * X.col(m) + b;
}

Implementations

* Explicit computation (CPU)

for (int 1 = ©; 1 < hsize; ++1)
for (int j = 0; j < msize; ++j) {
Y3(1i,J) = b(i);
for (int k = 9; k < xsize; ++k)
Y3(i,j) += W(i,k) * X(k,3);
}

e Per-instance vectorization (CPU)

for (int m = @; m < msize; ++m) {
Y2.col(m) = W * X.col(m) + b;
}

* Per-batch vectorization (CPU)

Y1 = (W * X).colwise() + b;

L inear Regression Speed

1000
10
% 1 \\\
C explicit o \\\\ﬁ}i\ batch (GPU)
Q 0.1 \\ . 513
8 \ 7/ 212
n 0.01 21(1)
= 2
: 9
0.001 : = 28
7 =2
0.0001

Algorithm

Why??

The answer: SIMD / vector processing / data
parallelism

Modern CPUs have SIMD instructions (e.g., add
vector rather than just add scalar); linear algebra
ibraries use these eftectively

CPUs can do a handful/dozens of operations at once

GPUs can do hundreds/thousands of operations at
once

Understanding GPUs

 CPUs try to minimize latency

* speculative branch prediction

e caching / pretetching memory
 CPUs do one thing at once but do it fast
 GPUs do lots of things (1000’s) at once

* have higher latency, but use latency hiding

CPUs vs GPUs

GPU Stream Multiprocessor — High Throughput Processor Computation Thread/Warp

Th Processing

Waiting for data

Ready to be processed
CPU core - Low Latency Processor

CUDA C/C++ BASICS

Mostly by NVIDIA Corporation
With some modifications by C Dyer

© NVIDIA 2013

What is CUDA?

e CUDA Architecture

— Expose GPU parallelism for general-purpose
computing

— Retain performance

 CUDA C/C++

— Based on industry-standard C/C++

— Small set of extensions to enable heterogeneous
programming

— Straightforward APIs to manage devices, memory etc.

Introduction to CUDA C/C++

 What will you learn in this session?
— Start from “Hello World!”
— Write and launch CUDA C/C++ kernels
— Manage GPU memory
— Manage communication and synchronization

CONCEPTS

A e A A AR RN R R R R R R R R AR A AR AR R R AR A AR R R R AN RN A A A A R AR A AN A A AR R AR AR AR NN RN aananannnnnnnn

__syncthreads()

© NVIDIA 2013

CONCEPTS .
-
-
-
-

__syncthreads()

HELLO WORLD!

Heterogeneous Computing

= Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;
#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global_ void stencil_1d(int *in, int *out) {

t temp[BLOCK_SIZE + 2 * RADIUS];

Rgindex threadldx.x + blockldx.x * blockDim.x;

int lindex = threadldx.x + RADIUS;

I/ Read input elements into shared memory

temp[lindex] = in[gindex];
if (threadidx.x < RADIUS) {

temp[lindex - RADIUS] = ingindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

I/ Synchronize (ensure all the data is available)

__syncthreads();

/I Apply the stencil
int result =
for (int offse

result += temp[lindex + offset];

I Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fil_n(x, n, 1);
}

int main(void) {

int *in, *out; I/ host copies of a, b, ¢
,*d_out; // device copies of a, b, ¢

int *d_i
int size = (N + 2*RADIUS) * sizeof(int);

RADIUS ; offset <= RADIUS ; offset++)

Il Alloc space for host copies and setup values
in = (int *)malloc(size); fil_ints(in, N + 2"RADIUS);
out = (int *)malloc(size); fillints(out, N + 2*RADIUS);

Il Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

I/ Copy to device

_in, in, size,

(ToDevice);

i_out, out, size,

I/ Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

I/ Copy result back to host

HostToDevice);

d_out, size,

I/ Cleanup

free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

DeviceToHost);

parallel fn

serial code

parallel code
serial code

[

&

© NVIDIA 2013

Simple Processing Flow

PCl Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

© NVIDIA 2013

Simple Processing Flow

PCl Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

© NVIDIA 2013

1.

Simple Processing Flow

PCl Bus >

Copy input data from CPU memory
to GPU memory

Load GPU program and execute,
caching data on chip for
performance

Copy results from GPU memory to
CPU memory

AL

;,/

L2

DRAM

© NVIDIA 2013

Hello World!

main () {

printf ("Hello World!'\n") ;

0;

Standard C that runs on the host

NVIDIA compiler (nvcc) splits code
into HOST and DEVICE code and
compiles. NVCC can compile
programs with no device code

Output:

S nvcc
hellq_world.
cu

S a.out
Hello World!

S

Hello World! with Device Code

mykernel () {

main () {
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n");
0;
}

= Two new syntactic elements...

Hello World! with Device Code

void mykernel (void) {

}

 CUDA C/C++ keyword indicates a function that:
— Runs on the device
— Is called from host code

e nvcc separates source code into host and device
components
— Device functions (e.g. mykerne1()) processed by NVIDIA compiler

— Host functions (e.g. main()) processed by standard host compiler
* gcgc,cl.exe

Hello World! with Device Code

mykernel<<<1l,1>>>() ;

* Triple angle brackets mark a call from host
code to device code

— Also called a “kernel launch”
— We’ll return to the parameters (1,1) in a moment

* That’s all that is required to execute a function
on the GPU!

Hello World! with Device Code

mykernel () {

main () {
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n");
0;

 mykernel () does nothing,
somewhat anticlimactic!

Output:

S nvcc
hello.cu

S a.out
Hello World!

S

Parallel Programming in CUDA C/C++

« But wait... GPU computing is about
massive parallelism!

 We need a more interesting example...

« We’'ll start by adding two integers and
build up to vector addition

Addition on the Device

* Asimple kernel to add two integers

add (*a, *b, *c) {
*c = *a + *b;

* As before is a CUDA C/C++ keyword
meaning

_ add() Will execute on the device
— add() Will be called from the host

Addition on the Device

* Note that we use pointers for the variables
add (, ') |

}

. add() runs on the device, so 3, b and ¢ must
point to device memory

* We need to allocate memory on the GPU

Memory Management

* Host and device memory are separate entities

pointers point to GPU memory
May be passed to/from host code

May not be dereferenced in host code

pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

 Simple CUDA API for handling device memory
— cudaMalloc (), cudaFree (), cudaMemcpy ()
— Similar to the C equivalentsmalloc (), free (), memcpy ()

Addition on the Device: aq4 ()

* Returning to our add() kernel

add (*a, *b, *c) |
*c = *a + *Db;

e Let’s take a look at main()...

Addition on the Device: main ()

int main(void) {

int a, b, c; // host copies of a, b, c
int *d _a, *d b, *d c; // device copies of a, b, c
int size = sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);
// Setup input values

a = 2;
b=7;

© NVIDIA 2013

Addition on the Device: main ()

// Copy inputs to device
cudaMemcpy (d a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<<1l,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

cudaFree (d _a); cudaFree(d b); cudaFree(d c);

return O;

© NVIDIA 2013

Shared memory

__syncthreads()

RUNNING IN
PARALLEL

© NVIDIA 2013

Moving to Parallel

* GPU computing is about massive parallelism
— So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< 1, 1 >>>();

* |nstead of executing add () once, execute N
times in parallel

Vector Addition on the Device

With adda () running in parallel we can do vector addition

Terminology: each parallel invocation of ada() is referred to
as a

— The set of blocks is referred to as a
— Each invocation can refer to its block index using

add (*a, *b, *c) |
cl] = al 1 + b] 1;
}

By using to index into the array, each block handles
a different index

Vector Addition on the Device

__global void add(int *a, int *b, int *c) {
cl] = al 1 + b[1;
}

* On the device, each block can execute in parallel:

Block O Block 1 Block 2 Block 3

c[0] = a[0] + b[O]; c[1l] = a[l] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

© NVIDIA 2013

Vector Addition on the Device: 244 ()

* Returning to our parallelized adqa() kernel

add (*a, *b, *c) A
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

e Let’s take a look at main()...

Vector Addition on the Device: nain ()

int main(void) {
int // host copies of a, b, c
int *d a, *d b, *d ¢; // device copies of a, b, c

int size = sizeof (int) ;

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, c¢ and setup input values

© NVIDIA 2013

Vector Addition on the Device: nain ()

// Copy inputs to device
cudaMemcpy (d _a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU with N blocks
add<<<i,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;

© NVIDIA 2013

Review (1 of 2)

 Difference between host and device
CPU
GPU

e Using to declare a function as device code
— Executes on the device
— Called from the host

* Passing parameters from host code to a device
function

Review (2 of 2)

* Basic device memory management

— cudaMalloc()
— cudaMemcpy ()
— cudaFree ()

* Launching parallel kernels
— Launch ~ copies of add () with ada<<<n,1->>(..);
— Use to access block index

Shared memory

__syncthreads()

INTRODUCING
THREADS

© NVIDIA 2013

CUDA Threads

Terminology: a block can be split into parallel

Let’s change add () to use parallel threads instead of

parallel blocks

add (*a, *b, *c) |
c[] = a[1 + b[1;
}

We use instead of

Need to make one change in main)...

Vector Addition Using Threads: main ()

#define N 512

int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c

int size = N * sizeof (int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);

b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc(size) ;

© NVIDIA 2013

Vector Addition Using Threads: main ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU with N
add<<< >>>(d a, d b, d c);

// Copy result back to host

cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree (d a); cudaFree(d b); cudaFree(d c);
0;

© NVIDIA 2013

Heterogeneous Computing

=
---------- Shared memory

__syncthreads()

COMBINING THREADS
AND BLOCKS

© NVIDIA 2013

Combining Blocks and Threads

We’ve seen parallel vector addition using:
— Many blocks with one thread each
— One block with many threads

Let’s adapt vector addition to use both blocks
and threads

Why? We’ll come to that...

First let’s discuss data indexing...

Indexing Arrays with Blocks and

Threads
* No longer as simple as using and
— Consider indexing an array with one element per thread (8

threads/block)

threadIdx.x threadIdx.x

0123456701234567

\. A J
Y Y

blockIdx.x = 2 blockIdx.x = 3

* With M threads/block a unique index for each thread
is given by:
index = threadIdx.x + blockIdx.x * M;

Indexing Arrays: Example

 Which thread will operate on the red
element?

threadIdx.x = 5

A

012|343 6|7/0/1/2,3/4,5|6|7

-
blockIdx.x

I
N

threadIdx.x + blockIdx.x * M;
5 + 2 * 8;

index

21;

Vector Addition with Blocks and
Threads

e Use the built-in variable viockpim.x for threads per
block

index = threadlIdx.x + blockIdx.x *

e Combined version of add () to use parallel
threads and parallel blocks

add (*a, *b, *c) {
index = threadIdx.x + blockIdx.x *
c[index] = a[index] + b[index];

}

 What changes need to be made in main()?

Addition with Blocks and Threads: main ¢

int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c

int size = N * sizeof (int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values

a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);
c = (int *)malloc(size) ;

© NVIDIA 2013

Addition with Blocks and Threads: main ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<< >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;

Handling Arbitrary Vector Sizes

* Typical problems are not friendly multiples of

* Avoid accessing beyond the end of the arrays:

add (*a, *b, *c, n) {
index = threadIdx.x + blockIdx.x *
if (index < n)
c[index] = a[index] + b[index];

 Update the kernel launch:

add<<< /M>>>(d a, d b, d ¢, N);

Branching in CUDA Kernels

e Best performance when branches are
minimized or small

* Using ternary operator can avoid some
branches

Why Bother with Threads?

 Threads seem unnecessary
— They add a level of complexity
— What do we gain?

* Unlike parallel blocks, threads have mechanisms
to:

— Communicate
— Synchronize

* To look closer, we need a new example...

Review

* Launching parallel kernels
— Launch ~ copies of add () With ada<<<w/m,M>>>(..) ;
— Use to access block index
— Use to access thread index within block

 Allocate elements to threads:

index = threadIdx.x + blockIdx.x * g

Heterogeneous Computing

Threads

Indexing

---------- Shared memory

.......... __syncthreads()

.......... AsynchrOHOUS operation

COOPERATING e
THREADS

© NVIDIA 2013

1D Stencil

* Consider applying a 1D stencil to a 1D array of
elements

— Each output element is the sum of input elements within a
radius

* If radius is 3, then each output element is the sum of
7 input elements:

I N

radius radius

Implementing Within a Block

* Each thread processes one output element
— blockDim.x elements per block

* Input elements are read several times
— With radius 3, each input element is read seven times

© NVIDIA 2013

Sharing Data Between Threads

Terminology: within a block, threads share data via

Extremely fast on-chip memory, user-managed
Declare using , allocated per block

Data is not visible to threads in other blocks

Implementing With Shared Memory

e Cache data in shared memory

— Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory

— Compute blockDim.x output elements
— Write blockDim.x output elements to global memory

— Each block needs a of radius elements at each boundary
Pl P il P P il P P P P P P P P il P P) b e b
%f—} %(—/
halo on left ¥ halo on right
| O U R R SN JU SRR SO U NN SN SR JUN SO O
N Y
g

blockDim.x output elements

Stencil Kernel

stencil 1d(*in, *out) ({

temp [BLOCK SIZE + 2 * RADIUS]; T
gindex = threadIdx.x + blockIdx.x * blockDim.x;
threadIdx.x + RADIUS;

lindex

// Read input elements into shared memory

temp[lindex] = in[gindex]; WEE 0
if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS]; R T O (1 |

temp[lindex + BLOCK SIZE] = SOSN8 S5 SN S8 8 SN IS IS
in[gindex + BLOCK SIZE];

© NVIDIA 2013

Stencil Kernel

result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result
out[gindex] = result;

Data Race!

= The stencil example will not work...

= Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = in[gindex]; (O U U0 UUaaoUgagyysyyl
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS = in[gindex — RADIUS];

temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
}

int result = 0;

result += temp[lindex + 1]; FEEEEEYYYIEEIIEEEY | e

~_syncthreads()

e Synchronizes all threads within a block
— Used to prevent RAW / WAR / WAW hazards

e All threads must reach the barrier

— In conditional code, the condition must be
uniform across the block

Stencil Kernel

stencil 1d(*in, *out) {
temp [BLOCK SIZE + 2 * RADIUS];
gindex = threadIdx.x + blockIdx.x * blockDim.x;

lindex

threadIdx.x + radius;

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];

()

Stencil Kernel

result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

out[gindex] = result;

Review (1 of 2)

* Launching parallel threads

— Launch v blocks with threads per block with
kernel N,M (..);

— Use to access block index within grid
— Use to access thread index within block

 Allocate elements to threads:

index = threadIdx.x + blockIdx.x *

Review (2 of 2)

* Use to declare a variable/array in
shared memory

— Data is shared between threads in a block

— Not visible to threads in other blocks

e Use as a barrier

— Use to prevent data hazards

Heterogeneous Computing

-
-
=
-

__syncthreads()

MANAGING THE
DEVICE

© NVIDIA 2013

Coordinating Host & Device

* Kernel launches are
— Control returns to the CPU immediately

* CPU needs to synchronize before consuming the

results

cudaMemcpy () Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have
completed

cudaMemcpyAsync () Asynchronous, does not block the CPU

cudaDeviceSynchro Blocks the CPU until all preceding CUDA calls have
nize () completed

Reporting Errors

* All CUDA API calls return an error code ()
— Error in the API call itself
OR

— Error in an earlier asynchronous operation (e.g. kernel)

e Get the error code for the last error:

cudaError t (void)
* Get a string to describe the error:
char * (cudaError t)

printf ("%$s\n", cudaGetErrorString(cudaGetLastError()))

Device Management

* Application can query and select GPUs

(int *count)
(int device)
(int *device)
(cudaDeviceProp *prop, int device)

* Multiple threads can share a device

* Asingle thread can manage multiple devices
(i) to select current device
() for peer-to-peer copies*

T requires OS and device support

Introduction to CUDA C/C++

e What have we learned?
— Write and launch CUDA C/C++ kernels

* _global , blockIdx.x, threadIdx.x, <<<>>>

— Manage GPU memory

* cudaMalloc (), cudaMemcpy (), cudaFree()

— Manage communication and synchronization

* shared , = syncthreads()

* cudaMemcpy () VS cudaMemcpyAsync (),
cudaDeviceSynchronize ()

Side-by-side Algorithms
Compute: y=ax+y “SAXPY”

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n: ++1)

y[1 = a*x[i] + y[il; Standard C Code
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Side-by-side Algorithms
Compute: y=ax+y “SAXPY”

void saxpy_serial(int n, float a, float *x, float *y)

{

for (Gint i = 0; 1 < n; ++1)
y[i] = a*x[i] + y[i]1; Standard C Code
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

global__ void saxpy_parallel(int n, float a, float *x, float *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i <n) y[i]l = a*x[i] + y[il; Parallel C Code
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, y);

CUDA Libraries

CUBLAS - fast BLAS implementation with standard
BLAS API

CUFFT - FFT library
CURAND - generate lots of pseudorandom numbers
CUSPARSE - sparse linear algebra

CUDNN - primitives for Neural Networks / Deep
Learning (convolutions, softmaxes, etc)

Aadvice |

* Always do some linear algebra
* Not just for MATLAB/Python - for all modern hardware, not just GPUs
e Shorter code, faster execution!

« GPU programming is difficult (CPUs are designed to shield you from hardware quirks, but
GPUs expose them to you), and newer GPU architectures change optimal usage patterns

 GPU memory and PCI busses are slow so things quickly become memory bound
» Use customized, high-level libraries when you can

* Only write in CUDA what you absolutely have to

e Unfortunately, GPUs are new: you might find what you need, you might not!

- GPUs shine when there is lots of computation per unit of memory (matrix-matrix
multiply!)

Aadvice |

« Memory allocation and copying is horrendously expensive

* Use big blocks, handle it yourself, stay on the GPU as much
as possible

 GPUs work well by latency hiding
e Do lots of stuff in parallel
e cudaStreams are one high level mechanism for doing this

e Asynchronous calls help improve scheduling- pay attention to
whether your library is behaving synchronously or
asynchronously

Questions

