Vectorization, GPUs, and CUDA

November 17, 2015
Goals of Today’s Lecture

- Benefits of vectorization
- Understanding GPU architectures
- Crash course in CUDA
Linear regression

\[\hat{y} = Wx + b \]
Linear regression

\[\hat{y} = Wx + b \]

Three implementations

Explicit computation

\[\hat{y}_{ij} = \sum_k w_{ik}x_{kj} + b_i \]

Note:

- \(i\) ranges over output variables
- \(j\) ranges over (training) instances
- \(k\) ranges over predictors
Linear regression
\[\hat{y} = Wx + b \]

Three implementations

Explicit computation
\[\hat{y}_{i,j} = \sum_k w_{i,k}x_{k,j} + b_i \]

Single instance
\[\hat{y}_j = Wx_j + b \]

Note:
- \(i \) ranges over output variables
- \(j \) ranges over (training) instances
- \(k \) ranges over predictors
Linear regression

\[\hat{y} = Wx + b \]

Three implementations

Explicit computation Single instance Batch

\[\hat{y}_{ij} = \sum_k w_{ik} x_{kj} + b_i \]
\[\hat{y}_j = Wx_j + b \]
\[\hat{Y} = WX + _{\text{colwise}} b \]

Note:

- \(i \) ranges over output variables
- \(j \) ranges over (training) instances
- \(k \) ranges over predictors
Linear Regression Speed

- **Four different algorithms**
 - Explicit computation - **CPU** (C++ implementation)
 - Per-instance vectorization - **CPU** (Eigen C++ library)
 - Per-batch vectorization - **CPU** (Eigen C++ library)
 - Per-batch vectorization - **GPU** (CUBLAS library)

- **Six different problem sizes**
 - $i=\{256, 512, \ldots, 16384\}$ (outputs), $k=8192$ (covariates), $j=128$ (batch size)
 - CPU: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
 - GPU: NVIDIA Tesla K40
Implementations

- Explicit computation (CPU)

```c
for (int i = 0; i < hsize; ++i)
    for (int j = 0; j < msize; ++j) {
        Y3(i,j) = b(i);
        for (int k = 0; k < xsize; ++k)
            Y3(i,j) += W(i,k) * X(k,j);
    }
```
Implementations

• Explicit computation (CPU)

```c
for (int i = 0; i < hsize; ++i)
    for (int j = 0; j < msize; ++j) {
        Y3(i, j) = b(i);
        for (int k = 0; k < xsize; ++k)
            Y3(i, j) += W(i, k) * X(k, j);
    }
```

• Per-instance vectorization (CPU)

```c
for (int m = 0; m < msize; ++m) {
    Y2.col(m) = W * X.col(m) + b;
}
```
Implementations

- Explicit computation (CPU)

```c
for (int i = 0; i < hsize; ++i) {
    for (int j = 0; j < msize; ++j) {
        Y3(i,j) = b(i);
        for (int k = 0; k < xsize; ++k) {
            Y3(i,j) += W(i,k) * X(k,j);
        }
    }
}
```

- Per-instance vectorization (CPU)

```c
for (int m = 0; m < msize; ++m) {
    Y2.col(m) = W * X.col(m) + b;
}
```

- Per-batch vectorization (CPU)

```c
Y1 = (W * X).colwise() + b;
```
Linear Regression Speed

![Linear Regression Speed Graph](chart.png)
Why?

• The answer: SIMD / vector processing / data parallelism

• Modern CPUs have SIMD instructions (e.g., add vector rather than just add scalar); linear algebra libraries use these effectively

• CPUs can do a handful/dozens of operations at once

• GPUs can do hundreds/thousands of operations at once
Understanding GPUs

• CPUs try to minimize latency
 • speculative branch prediction
 • caching / prefetching memory
• CPUs do one thing at once but do it fast
• GPUs do lots of things (1000’s) at once
 • have higher latency, but use latency hiding
CPUs vs GPUs
CUDA C/C++ BASICS

Mostly by NVIDIA Corporation
With some modifications by C Dyer
What is CUDA?

• CUDA Architecture
 – Expose GPU parallelism for general-purpose computing
 – Retain performance

• CUDA C/C++
 – Based on industry-standard C/C++
 – Small set of extensions to enable heterogeneous programming
 – Straightforward APIs to manage devices, memory etc.
Introduction to CUDA C/C++

• What will you learn in this session?
 – Start from “Hello World!”
 – Write and launch CUDA C/C++ kernels
 – Manage GPU memory
 – Manage communication and synchronization
HELLO WORLD!
Heterogeneous Computing

- Terminology:
 - Host: The CPU and its memory (host memory)
 - Device: The GPU and its memory (device memory)
Heterogeneous Computing

```c
#include <iostream>
#include <algorithm>
using namespace std;

#define N          1024
#define RADIUS     3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
    int gindex = threadIdx.x + blockIdx.x * blockDim.x;
    int lindex = threadIdx.x + RADIUS;
    // Read input elements into shared memory
    temp[lindex] = in[gindex];
    if (threadIdx.x < RADIUS) {
        temp[lindex - RADIUS] = in[gindex - RADIUS];
        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
    }
    // Synchronize (ensure all the data is available)
    __syncthreads();
    // Apply the stencil
    int result = 0;
    for (int offset = -RADIUS; offset <= RADIUS; offset++)
        result += temp[lindex + offset];
    // Store the result
    out[gindex] = result;
}

void fill_ints(int *x, int n) {
    fill_n(x, n, 1);
}

int main(void) {
    int *in, *out;
    // host copies of a, b, c
    int *d_in, *d_out;
    // device copies of a, b, c
    size = (N + 2*RADIUS) * sizeof(int);
    // Alloc space for host copies and setup values
    in = (int*) malloc(size);
    fill_ints(in, N + 2*RADIUS);
    out = (int*) malloc(size);
    fill_ints(out, N + 2*RADIUS);
    // Alloc space for device copies
    cudaMalloc((void**)&d_in, size);
    cudaMalloc((void**)&d_out, size);
    // Copy to device
    cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);
    // Launch stencil_1d() kernel on GPU
    stencil_1d<<<N/BLOCK_SIZE, BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);
    // Copy result back to host
    cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
    // Cleanup
    free(in); free(out);
    return 0;
}
```

© NVIDIA 2013
1. Copy input data from CPU memory to GPU memory
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
Hello World!

```c
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the host
- NVIDIA compiler (nvcc) splits code into HOST and DEVICE code and compiles. NVCC can compile programs with no device code

Output:

```
$ nvcc hello_world.cu
$ a.out
Hello World!
$ 
```
Hello World! with Device Code

```c
__global__ void mykernel(void) {
}

int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

- Two new syntactic elements...
Hello World! with Device Code

```c
__global__ void mykernel(void) {
}
```

- CUDA C/C++ keyword `__global__` indicates a function that:
 - Runs on the device
 - Is called from host code

- `nvcc` separates source code into host and device components
 - Device functions (e.g. `mykernel()`) processed by NVIDIA compiler
 - Host functions (e.g. `main()`) processed by standard host compiler
 - `gcc`, `cl.exe`

© NVIDIA 2013
Hello World! with Device Code

mykernel<<1,1>>>();

• Triple angle brackets mark a call from host code to device code
 – Also called a “kernel launch”
 – We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function on the GPU!
Hello World! with Device Code

```c
__global__ void mykernel(void)
{
}

int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

- mykernel() does nothing, somewhat anticlimactic!

Output:

```bash
$ nvcc hello.cu
hello.cu
$ a.out
Hello World!
$
```

© NVIDIA 2013
Parallel Programming in CUDA C/C++

• But wait... GPU computing is about massive parallelism!

• We need a more interesting example...

• We’ll start by adding two integers and build up to vector addition
Addition on the Device

• A simple kernel to add two integers

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• As before `__global__` is a CUDA C/C++ keyword meaning
 - `add()` will execute on the device
 - `add()` will be called from the host
Addition on the Device

• Note that we use pointers for the variables

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• `add()` runs on the device, so `a`, `b` and `c` must point to device memory

• We need to allocate memory on the GPU
Memory Management

• Host and device memory are separate entities
 – *Device* pointers point to GPU memory
 May be passed to/from host code
 May *not* be dereferenced in host code
 – *Host* pointers point to CPU memory
 May be passed to/from device code
 May *not* be dereferenced in device code

• Simple CUDA API for handling device memory
 – `cudaMalloc()`, `cudaFree()`, `cudaMemcpy()`
 – Similar to the C equivalents `malloc()`, `free()`, `memcpy()`
Addition on the Device: \texttt{add()}

- Returning to our \texttt{add()} kernel

\begin{verbatim}
__global__ void add(int *a, int *b, int *c) {
 *c = *a + *b;
}
\end{verbatim}

- Let’s take a look at \texttt{main()}...
int main(void) {
 int a, b, c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = sizeof(int);

 // Allocate space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Setup input values
 a = 2;
 b = 7;
Addition on the Device: main()

// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
}
CONCEPTS

Heterogeneous Computing
Blocks
Threads
Indexing
Shared memory
__syncthreads()
Asynchronous operation
Handling errors
Managing devices

RUNNING IN PARALLEL

© NVIDIA 2013
Moving to Parallel

• GPU computing is about massive parallelism
 – So how do we run code in parallel on the device?

  ```
  add<<< 1, 1 >>>();
  add<<< N, 1 >>>();
  ```

• Instead of executing `add()` once, execute N times in parallel
Vector Addition on the Device

• With \texttt{add()} running in parallel we can do vector addition

• Terminology: each parallel invocation of \texttt{add()} is referred to as a \textcolor{red}{block}
 – The set of blocks is referred to as a \textcolor{red}{grid}
 – Each invocation can refer to its block index using \texttt{blockIdx.x}

\begin{verbatim}
__global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
\end{verbatim}

• By using \texttt{blockIdx.x} to index into the array, each block handles a different index
Vector Addition on the Device

```c
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

- On the device, each block can execute in parallel:

 - Block 0: `c[0] = a[0] + b[0];`
 - Block 1: `c[1] = a[1] + b[1];`
Vector Addition on the Device: \texttt{add()}

• Returning to our parallelized \texttt{add()} kernel

\begin{verbatim}
__global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
\end{verbatim}

• Let’s take a look at main()...
Vector Addition on the Device: main()

```c
#define N 512
int main(void) {
    int *a, *b, *c; // host copies of a, b, c
    int *d_a, *d_b, *d_c; // device copies of a, b, c
    int size = N * sizeof(int);

    // Alloc space for device copies of a, b, c
    cudaMalloc((void **)&d_a, size);
    cudaMalloc((void **)&d_b, size);
    cudaMalloc((void **)&d_c, size);

    // Alloc space for host copies of a, b, c and setup input values
    a = (int *)malloc(size); random_ints(a, N);
    b = (int *)malloc(size); random_ints(b, N);
    c = (int *)malloc(size);
```
Vector Addition on the Device: `main()`

```c
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```

© NVIDIA 2013
Review (1 of 2)

- Difference between *host* and *device*
 - *Host* CPU
 - *Device* GPU

- Using `__global__` to declare a function as device code
 - Executes on the device
 - Called from the host

- Passing parameters from host code to a device function
Review (2 of 2)

• Basic device memory management
 – cudaMalloc()
 – cudaMemcpy()
 – cudaFree()

• Launching parallel kernels
 – Launch N copies of $\text{add}()$ with $\text{add}<<<N,1>>>(...);$
 – Use blockIdx.x to access block index
INTRODUCING THREADS

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices

© NVIDIA 2013
CUDA Threads

• Terminology: a block can be split into parallel threads

• Let’s change `add()` to use parallel threads instead of parallel blocks

  ```c
  __global__ void add(int *a, int *b, int *c) {
      c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
  }
  ```

• We use `threadIdx.x` instead of `blockIdx.x`

• Need to make one change in `main()`...
Vector Addition Using Threads: `main()`

```c
#define N 512
int main(void) {
    int *a, *b, *c;          // host copies of a, b, c
    int *d_a, *d_b, *d_c;    // device copies of a, b, c
    int size = N * sizeof(int);

    // Alloc space for device copies of a, b, c
    cudaMalloc((void **)&d_a, size);
    cudaMalloc((void **)&d_b, size);
    cudaMalloc((void **)&d_c, size);

    // Alloc space for host copies of a, b, c and setup input values
    a = (int *)malloc(size); random_ints(a, N);
    b = (int *)malloc(size); random_ints(b, N);
    c = (int *)malloc(size);
}
```

© NVIDIA 2013
Vector Addition Using Threads: `main()`

```c
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N threads
add<<<1,N>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```
COMBINING THREADS AND BLOCKS
Combining Blocks and Threads

• We’ve seen parallel vector addition using:
 – Many blocks with one thread each
 – One block with many threads

• Let’s adapt vector addition to use both blocks and threads

• Why? We’ll come to that...

• First let’s discuss data indexing...
Indexing Arrays with Blocks and Threads

- No longer as simple as using `blockIdx.x` and `threadIdx.x`
 - Consider indexing an array with one element per thread (8 threads/block)

 \[
 \text{int index} = \text{threadIdx.x} + \text{blockIdx.x} \times M;
 \]

- With M threads/block a unique index for each thread is given by:
Indexing Arrays: Example

• Which thread will operate on the red element?

```
int index = threadIdx.x + blockIdx.x * M;
= 5 + 2 * 8;
= 21;
```
Vector Addition with Blocks and Threads

- Use the built-in variable `blockDim.x` for threads per block

  ```
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  ```

- Combined version of `add()` to use parallel threads *and* parallel blocks

  ```
  __global__ void add(int *a, int *b, int *c) {
      int index = threadIdx.x + blockIdx.x * blockDim.x;
      c[index] = a[index] + b[index];
  }
  ```

- What changes need to be made in `main()`?
Addition with Blocks and Threads: `main()`

```c
#define N (2048*2048)
#define THREADS_PER_BLOCK 512

int main(void) {
    int *a, *b, *c;                      // host copies of a, b, c
    int *d_a, *d_b, *d_c;                // device copies of a, b, c
    int size = N * sizeof(int);

    // Alloc space for device copies of a, b, c
    cudaMalloc((void **)&d_a, size);
    cudaMalloc((void **)&d_b, size);
    cudaMalloc((void **)&d_c, size);

    // Alloc space for host copies of a, b, c and setup input values
    a = (int *)malloc(size); random_ints(a, N);
    b = (int *)malloc(size); random_ints(b, N);
    c = (int *)malloc(size);
```
Addition with Blocks and Threads: \texttt{main()}

```c
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<N/THREADS_PER_BLOCK, THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```
Handling Arbitrary Vector Sizes

• Typical problems are not friendly multiples of blockDim.x

• Avoid accessing beyond the end of the arrays:

```c
__global__ void add(int *a, int *b, int *c, int n) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];
}
```

• Update the kernel launch:

```c
add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);
```
Branching in CUDA Kernels

- Best performance when branches are minimized or small
- Using ternary operator can avoid some branches
Why Bother with Threads?

• Threads seem unnecessary
 – They add a level of complexity
 – What do we gain?

• Unlike parallel blocks, threads have mechanisms to:
 – Communicate
 – Synchronize

• To look closer, we need a new example...
Review

• Launching parallel kernels
 – Launch N copies of `add()` with `add<<<N/M,M>>>(...);`
 – Use `blockIdx.x` to access block index
 – Use `threadIdx.x` to access thread index within block

• Allocate elements to threads:

  ```c
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  ```
COOPERATING THREADS

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
 - __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
1D Stencil

• Consider applying a 1D stencil to a 1D array of elements
 – Each output element is the sum of input elements within a radius

• If radius is 3, then each output element is the sum of 7 input elements:
Implementing Within a Block

• Each thread processes one output element
 – blockDim.x elements per block

• Input elements are read several times
 – With radius 3, each input element is read seven times
Sharing Data Between Threads

• Terminology: within a block, threads share data via shared memory

• Extremely fast on-chip memory, user-managed

• Declare using **__shared__**, allocated per block

• Data is not visible to threads in other blocks
Implementing With Shared Memory

• Cache data in shared memory
 – Read (blockDim.x + 2 * radius) input elements from global memory to shared memory
 – Compute blockDim.x output elements
 – Write blockDim.x output elements to global memory

 – Each block needs a halo of radius elements at each boundary

© NVIDIA 2013
__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] =
 in[gindex + BLOCK_SIZE];
}
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

// Store the result
out[gindex] = result;
Data Race!

- The stencil example will not work...

- Suppose thread 15 reads the halo before thread 0 has fetched it...

```c
int result = 0;
result += temp[lindex + 1];
```

```c
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
    temp[lindex - RADIUS = in[gindex - RADIUS];
    temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}
```

© NVIDIA 2013
__syncthreads()

- void __syncthreads();

- Synchronizes all threads within a block
 - Used to prevent RAW / WAR / WAW hazards

- All threads must reach the barrier
 - In conditional code, the condition must be uniform across the block
__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + radius;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();
}
Stencil Kernel

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

// Store the result
out[gindex] = result;
Review (1 of 2)

• Launching parallel threads
 – Launch \(N \) blocks with \(M \) threads per block with
 \(\text{kernel} \langle \langle N, M \rangle \rangle (...) \);
 – Use \text{blockIdx.x} to access block index within grid
 – Use \text{threadIdx.x} to access thread index within block

• Allocate elements to threads:

\[
\text{int index} = \text{threadIdx.x} + \text{blockIdx.x} \times \text{blockDim.x};
\]
Review (2 of 2)

• Use `__shared__` to declare a variable/array in shared memory
 – Data is shared between threads in a block
 – Not visible to threads in other blocks

• Use `__syncthreads()` as a barrier
 – Use to prevent data hazards
MANAGING THE DEVICE

CONCEPTS
- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
Coordinating Host & Device

• Kernel launches are asynchronous
 – Control returns to the CPU immediately

• CPU needs to synchronize before consuming the results

 cudaMemcpy() Blocks the CPU until the copy is complete
 Copy begins when all preceding CUDA calls have completed

 cudaMemcpyAsync() Asynchronous, does not block the CPU

 cudaMemcpySync() Blocks the CPU until all preceding CUDA calls have completed
Reporting Errors

• All CUDA API calls return an error code (*cudaError_t*)
 – Error in the API call itself
 OR
 – Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:

 `cudaError_t cudaMemcpyError = cudaMemcpyError();`

• Get a string to describe the error:

 `char *cudaGetErrorString(cudaError_t)`

 `printf("\%s\n", cudaGetErrorString(cudaGetLastError()));`
Device Management

• Application can query and select GPUs

 - `cudaGetDeviceCount(int *count)`
 - `cudaSetDevice(int device)`
 - `cudaGetDevice(int *device)`
 - `cudaGetDeviceProperties(cudaDeviceProp *prop, int device)`

• Multiple threads can share a device

• A single thread can manage multiple devices

 - `cudaSetDevice(i)` to select current device
 - `cudaMemcpy(...)` for peer-to-peer copies

* requires OS and device support
Introduction to CUDA C/C++

• What have we learned?
 – Write and launch CUDA C/C++ kernels
 • __global__, blockIdx.x, threadIdx.x, <<<>>>
 – Manage GPU memory
 • cudaMalloc(), cudaMemcpy(), cudaFree()
 – Manage communication and synchronization
 • __shared__, __syncthreads()
 • cudaMemcpy() VS cudaMemcpyAsync(), cudaDeviceSynchronize()
Side-by-side Algorithms

Compute: $y = \alpha x + y$ “SAXPY”

```c
void saxpy_serial(int n, float a, float *x, float *y)
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);
```

Standard C Code
Compute: $y = \alpha x + y$ “SAXPY”
CUDA Libraries

- CUBLAS - fast BLAS implementation with standard BLAS API
- CUFFT - FFT library
- CURAND - generate lots of pseudorandom numbers
- CUSPARSE - sparse linear algebra
- CUDNN - primitives for Neural Networks / Deep Learning (convolutions, softmaxes, etc)
Advice I

- Always do some linear algebra
 - Not just for MATLAB/Python - for all modern hardware, not just GPUs
 - Shorter code, faster execution!
- GPU programming is difficult (CPUs are designed to shield you from hardware quirks, but GPUs expose them to you), and newer GPU architectures change optimal usage patterns
 - GPU memory and PCI busses are slow so things quickly become memory bound
 - Use customized, high-level libraries when you can
 - Only write in CUDA what you absolutely have to
 - Unfortunately, GPUs are new: you might find what you need, you might not!
- **GPUs shine when there is lots of computation per unit of memory (matrix-matrix multiply)**!
Advice II

- Memory allocation and copying is horrendously expensive
 - Use big blocks, handle it yourself, stay on the GPU as much as possible
- GPUs work well by latency hiding
 - Do lots of stuff in parallel
 - cudaStreams are one high level mechanism for doing this
- Asynchronous calls help improve scheduling- pay attention to whether your library is behaving synchronously or asynchronously
Questions