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Learning Objectives

* Know what a low-resource language or domain is

* Know three main approaches to low-resource NLP:
* Traditional/rule based
* Unsupervised learning
* Transfer learning

* Know three examples of transfer learning



Low-Resource Natural Language Processing

* languages...
e domains...

 parallel corpora

* extensive monolingual corpora
e other annotated data

* existing NLP tools



* Most languages are low-resource
* Approximately 7,000 languages

* Adequate NLP resources for about
10 languages

Most NLP  Most people in the world speech a
Problems are :

language not included in that 10

* Most domains are low-resource

Low-Resource | * Biomedical text
NLP Problems E Legal tex
‘ * Literary text
 Twitter

» Solving any of these problems
requires doing low-resource NLP




Approaches

== Iraditional

e Get more data

e Build language-specific tools with linguistic
knowledge

mm Unsupervised learning

e Use machine learning techniques that do not
require labeled training data

s | ransfer

e Exploit training data from higher-resource
settings to provide supervision for low-
resource scenarios
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2 * The naivest approach to low-resource
scenarios is to convert them to high-resource
scenarios

 Obtain more unannotated data
e Annotate it

* This has a number of obvious shortcomings
* Raw data is often difficult to obtain.

Obtaining

: E . * Domains where only a limited amount
I\/l ore D ata e of text exists, like law or medicine
* Languages that do not have a
significant internet presence

* Annotation of data is expensive

* Turkers are cheap, but unskilled and
still cost money

* Experts are expensive and slow




Rule-Based NLP

* One approach to low-resource NLP is to use models that are based on
linguistic descriptions rather than being data-driven

* Given a reference grammar of sufficient quality and a lexicon, a
computational linguist can build rule-based models for many things:
* Morphological analysis
* Parsing
 Named entity recognition
* Relation extraction

* However, this is also problematic
* Not enough grammars
* Not enough computational linguists



Linguistically
Inspired # Rule
Based

 However, using linguistic knowledge does not
mean constructing an entirely rule-based system

* One successful approach:

* Combine linguistic knowledge and machine
learning

* Not easy with deep learning, but possible
* For examples, stay tuned

. Wy
~ Y2
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Unsupervise

Approache




Not All Machine Learning is Supervised

e Suppose you have a large body of unlabeled data, but little or no
labeled data

* You can extract a lot of patterns from it

* For example, word embeddings and models like BERT are
unsupervised

* Human language learning is also largely unsupervised (although we
do get some supervision for other senses) so we know it is possible to
learn language without labeled data



Brown Clusters

* Hierarchical agglomerative clustering of words based on the contexts
in which they occur

* Purely unsupervised

e Semantically related words end up in the same part of the tree
e City names cluster together
e Country names cluster together
* Colors cluster together

 Example from SLP: suppose you want to know the probability of “to
Shanghai” but the bigram “to Shanghai” never occurs in the data. You
can estimate the probability by looking “to X” where X is other city
names in the same cluster with Shanghai.
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Learn One Place, Apply Elsewhere

* As humans, we have little problem generalizing knowledge gained in
one domain to other domains

* When we are reading legal documents, we use knowledge that we gained
reading everyday English

* When we learn Japanese, we may use knowledge that we gained speaking
Korean

* This is the basic idea behind transfer learning

* It involves techniques to “transfer” knowledge gained in one domain
to another



One Example: Uyghur NER

e Uyghur is a low-resource language spoken in the northwest of China.

* It is related to other, higher-resource, languages like Uzbek, Kazakh,
Turkmen, and Turkish

* Turkish, Uzbek, and Uyghur are each written with a different script

* We built a Uyghur NER model as follows:
* Convert all of the data to IPA (the International Phonetic Alphabet)

* Convert IPA to articulatory features (phonetic features that define how each
sound is produced)

* Train a model on Turkish and Uzbek
e Tune the model on Uyghur, and test on Uyghur
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Another Example: Cross-Lingual Dependency
Parsing

* Interested parties have now produced a large collection of
dependency treebanks called the Universal Dependency (or UD)
Treebanks

* Dependency trees have a lot in common between languages

* This commonalities are often latent structures

* Related languages tend to have more shared structural properties than
randomly selected languages

* It is possible to train cross-lingual or polyglot dependency parsers and
to use them on languages for which there is no treebank

* Lots of techniques for this



