
Natural Language Processing
Lecture 2: Words and Morphology

Linguistic Morphology
The shape of Words to Come

What? Linguistics?

• One common complaint we receive in this course goes
something like the following:
I’m not a linguist, I’m a computer scientist! Why do you keep
talking to me about linguistics?
• NLP is not just P; it’s also NL
• Just as you would need to know something about biology in

order to do computational biology, you need to know
something about natural language to do NLP
• If you were linguists, we wouldn’t have to talk much about

natural language because you would already know about it

What? Linguistics?

• One common complaint we receive in this course goes
something like the following:
I’m not a linguist, I’m a computer scientist! Why do you keep
talking to me about linguistics?
• NLP is not just P; it’s also NL
• Just as you would need to know something about biology in

order to do computational biology, you need to know
something about natural language to do NLP
• If you were linguists, we wouldn’t have to talk much about

natural language because you would already know about it

What is Morphology?

• Words are not atoms
• They have internal structure
• They are composed (to a first approximation) of morphemes
• It is easy to forget this if you are working with English or Chinese, since they

are simpler, morphologically speaking, than most languages.
• But...

• mis-understand-ing-s
• 同志们 tongzhi-men ‘comrades’

Kind of Morphemes

• Roots
• The central morphemes in words, which carry the main

meaning
• Affixes
• Prefixes
• pre-nuptual, ir-regular

• Suffixes
• determin-ize, iterat-or

• Infixes
• Pennsyl-f**kin-vanian

• Circumfixes
• ge-sammel-t

Nonconcatenative Morphology

• Umlaut
• foot : feet :: tooth : teeth

• Ablaut
• sing, sang, sung

• Root-and-pattern or templatic morphology
• Common in Arabic, Hebrew, and other Afroasiatic languages
• Roots made of consonants, into which vowels are shoved

• Infixation
• Gr-um-adwet

Functional Differences in Morphology

• Inflectional morphology
• Adds information to a word consistent with its context within a sentence
• Examples

• Number (singular versus plural)
automaton → automata

• Walk → walks
• Case (nominative versus accusative versus…)

he, him, his, …
• Derivational morphology
• Creates new words with new meanings (and often with new parts of

speech)
• Examples

• parse → parser
• repulse → repulsive

Irregularity

• Formal irregularity
• Sometimes, inflectional marking differs depending on the root/base

• walk : walked : walked :: sing : sang : sung

• Semantic irregularity/unpredictabililty
• The same derivational morpheme may have different meanings/functions

depending on the base it attaches to
• a kind-ly old man
• *a slow-ly old man

The Problem and Promise of Morphology

• Inflectional morphology (especially) makes instances of the same
word appear to be different words
• Problematic in information extraction, information retrieval

• Morphology encodes information that can be useful (or even
essential) in NLP tasks
• Machine translation
• Natural language understanding
• Semantic role labeling

Morphology in NLP

• The processing of morphology is largely a solved problem in NLP
• A rule-based solution to morphology: finite state methods
• Other solutions
• Supervised, sequence-to-sequence models
• Unsupervised models

Levels of Analysis

Level hugging panicked foxes

Lexical form hug +V +Prog panic +V +Past fox +N +Pl
fox +V +Sg

Morphemic form
(intermediate form)

hug^ing# panic^ed# fox^s#

Orthographic form
(surface form)

hugging panicked foxes

• In morphological analysis, map from orthographic form to lexical form (using
morphemic form as intermediate representation)

• In morphological generation, map from lexical form to orthographic form (using
the morphemic form as intermediate representation)

Morphological Analysis and Generation:
How?

• Finite-state transducers (FSTs)
• Define regular relations between strings
• “foxes”ℜ“fox +V +3p +Sg +Pres”
• “foxes”ℜ“fox +N +Pl”
• Widely used in practice, not just for morphological analysis and generation,

but also in speech applications, surface syntactic parsing, etc.
• Once compiled, run in linear time (proportional to the length of the input)

• To understand FSTs, we will first learn about their simpler relative,
the FSA or FSM
• Should be familiar from theoretical computer science
• FSAs can tell you whether a word is morphologically “well-formed” but

cannot do analysis or generation

Finite State Automata
Accept them!

Finite-State Automaton

•Q: a finite set of states
• q0 ∈ Q: a special start state
•F ⊆ Q: a set of final states
•Σ: a finite alphabet
•Transitions:

•Encodes a set of strings that can be recognized
by following paths from q0 to some state in F.

qi
qjs ∈ Σ*

...
...

A “baaaaa!”d Example of an FSA

Don’t Let Pedagogy Lead You Astray

• To teach about finite state machines, we often trace our way from
state to state, consuming symbols from the input tape, until we
reach the final state
• While this is not wrong, it can lead to the wrong idea
• What are we actually asking when we ask whether a FSM accepts a

string? Is there a path through the network that…
• Starts at the initial state
• Consumes each of the symbols on the tape
• Arrives at a final state, coincident with the end of the tape

• Think depth-first search!

Formal Languages

• A formal language is a set of strings, typically one that
can be generated/recognized by an automaton
• A formal language is therefore potentially quite different

from a natural language
• However, a lot of NLP and CL involves treating natural

languages like formal languages
• The set of languages that can be recognized by FSAs are

called regular languages
• Conveniently, (most) natural language morphologies

belong to the set of regular languages

FSAs and Regular Expressions

• The set of languages that can be characterized by FSAs
are called “regular” as in “regular expression”
• Regular expressions, as you may known, are a fairly

convenient and standard way to represent something
equivalent to a finite state machine
• The equivalence is pretty intuitive (see the book)
• There is also an elegant proof (not in the book)

•Note that “regular expression” implementations in
programming languages like Perl and Python often go
beyond true regular expressions

FSA for English Derivational Morphology

Finite State Transducers
I am no longer accepting the things I cannot change.

Morphological Parsing/Analysis

Input: a word
Output: the word’s stem(s)/lemmas and features
expressed by other morphemes.

Example: geese → {goose +N +Pl}
gooses → {goose +V +3P +Sg}
dog → {dog +N +Sg, dog +V}
leaves → {leaf +N +Pl, leave +V +3P +Sg}

Three Solutions

1. Table
2. Trie
3. Finite-state transducer

Finite State Transducers

• Q: a finite set of states
• q0 ∈ Q: a special start state
• F ⊆ Q: a set of final states
• Σ and Δ: two finite alphabets
• Transitions:

qi
qj

s : t
s ∈ Σ* and t ∈ Δ*

...
...

Translating from Assertive Sheep to Quizzical
Cow

q0bi�`i q1 q2 q3 q4

#,K �,Q �,Q
�,Q

5,\

<latexit sha1_base64="Un4g+8NcAT1Yl5CVVpu1+BPKCaM=">AAAERHicjZPditNAFMfTxI/d+rXVS2/G7Qq7UEuSFpTK6qI3Xq5gdxfSUCaTSTp0MpNOJgs15AF8Gm/1BXwH38E78VacTKM03cJ6oHA45/fP4fx7JkgpyaRtf2+Z1o2bt27v7Lbv3L13/8Fe5+FZxnOB8BhxysVFADNMCcNjSSTFF6nAMAkoPg/mb6v++SUWGeHsg1ym2E9gzEhEEJSqNO2Y+5MAx4QVksw/pgTJXODSYzzEIFTTIUP42EVJjzMQCxL67UnV81RH4h5hRBJIfXC4sI9AcbCY2gfly3WkajlHwBMknsljHoGF7WvQ2QK6DdBZge4WcNAA3RU42AB7ECGcSsLiSjJsSAYryVBLUihn3rNX9RY4jDHwAsxCQHEkfaC98GDAL9XsIhglpd6pDf6FXvEaHRzxUq/Y0Ln/qxs0dYO/Osp5CmpWC2vBOq7jmjFPRq9L7ZLyQzGNa2hP97p239YBriZOnXSNOk6nndbuJOQoTzCTiMIs8xw7lX4BhSSIqi9O8gynEM1hjD2VMpjgzC/0NZfgqaqEIOJC/ZgEurquKGCSZcskUGSi/rpss1cVt/W8XEYv/IKwNJeYodWgKKdAclA9DXXwAiNJlyqBSKjTRgDNoIBIqgfUmFLZs9qiyigJBBTLAuaSq6mwl/KMVM9L3V6pzHM2rbqanLl9Z9gfvne7J29qG3eMx8a+cWg4xnPjxHhnnBpjA5mfzM/mF/Or9c36Yf20fq1Qs1VrHhmNsH7/AXl+Uk4=</latexit>

Turkish Example

uygarlaştıramadıklarımızdanmışsınızcasına
“(behaving) as if you are among those whom we were not able to civilize”

uygar “civilized”
+laş “become”
+tır “cause to”
+ama “not able”
+dık past participle
+lar plural
+ımız first person plural possessive (“our”)
+dan second person plural (“y’all”)
+mış past
+sınız ablative case (“from/among”)
+casına finite verb → adverb (“as if”)

Morphological Parsing with FSTs

• Note “same symbol” shorthand.
• ^ denotes a morpheme boundary.
• # denotes a word boundary.
• ^ and # are not there

automatically—they must be
inserted.

Separation of concerns

• Typically, a morphological analyzer will be divided into (at least) two
sections, each implemented with a separate FST:
• Morphotactics
• Allomorphic/orthographic rules

• Morphotactics
• Maps between “zoch +N +Pl” and “zoch^s#”
• Concatenates the “basic” form of morphemes together
• Lemmas concatenated with affixes
• Lemma can be “guessed”

• Allomorphic rules
• Maps between output of morphtactics (intermediate or morphemic

representation) and surface representation
• “zoch^s#” <-> “zoches"

Generating Inflected forms of English Verbs
from Lemmas

q0bi�`i q1 q2 q3 q4

q5

�Mv
✏, Ù ✏,B

✏,b
✏,2

✏,M ✏,;

✏,/

<latexit sha1_base64="vEcK7GYg/no1JoutfzXD/S+qVGI=">AAAFZXiclVRfa9RAEE97PW1Pq62KLz642BNaOI8kd0VRKsW++FjB/oEkHpvNXLp0s5tmN5Uz5Av5aXytX8Cv4WYT4dIexQ4Ehpnf/Cbz290JU0alsu2rpeXOSvfe/dW13oOH648eb2w+OZYizwgcEcFEdhpiCYxyOFJUMThNM8BJyOAkPD+o8ieXkEkq+Fc1SyFIcMzplBKsdGiy2TnwQ4gpLxQ9/5FSovIMSo+LCFCku2NOYM8lyUBwFGc0Cnp+lfN0RsGAcqooZgHavrB3UNG/mNj98sM8pEo5O8jLaHym9sQUXdiBAToLgG4L6NRAdwFw1AK6NXB0DTjAhECqKI+rknGrZFSXjBdw72pgCEx8n+feNcAUqzPvzcdmXIhiQB4TIkU4FJe62KhWYD4r0fZOD7WthofAI8Rgqhq015QWfR9SSZng/ff+Nx+VRrc5DiPj/3PQ0uh5y08YMW5hkKVR7U4M/0LzPFAaUVujuHcZhZfmxFsEo7sQxDcmMad8+yQ15zxNVNPoe6BLWs+lN9nYsoe2MXTTcRpny2rscLK5tOZHguQJcEUYltJz7FQFBc4UJUwz+rmEFJNzHIOnXY4TkEFhnnuJXutIhKYi0x9XyETnKwqcSDlLQo1M9JWV13NVcFHOy9X0XVBQnuYKOKkbTXOGlEDV7tAbIQOi2Ew7mGT67RNEznCGidIbptWlkqeeovIYDTOczQqcK6G74kEqJK32j36cpRbPuS7VTefYHTrj4fiLu7X/qZFx1XphvbK2Lcd6a+1bn61D68ginZ+dX52rzu+VP9317rPu8xq6vNTUPLVa1n35F/QAqb0=</latexit>

English Spelling (Orthographic Rules)

The E Insertion Rule as a FST

e ! 2/

8
<

:

b
t
x

9
=

;ˆ nn bO
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FST in Theory, Rule in Practice

• There are a number of FST toolkits (XFST, HFST, Foma, etc.) that
allow you to compile rewrite rules into FSTs
• Rather than manually constructing an FST to handle orthographic

alternations, you would be more likely to write rules in a notation
similar to the rule on the preceding slide.
• Cascades of such rules can then be compiled into an FST and

composed with other FSTs
• For your homework, you will construct FSTs directly, using some

code to make the process tractable.

Combining FSTs

parse

generate

Operations on FSTs

• There are a number of operations that can be performed on FSTs:
• composition: Given transducers T and S, there exists a transducer T ∘ S such that

x[T ∘ S]z iff x[T]y and y[S]z; effectively equivalent to feeding an input to T,
collecting the output from T, feeding this output to S and collecting the output
from S.

• concatenation: Given transducers T and S, there exists a transducer
T · S such that x1x2[T · S]y1y2 and x1[T]y1 and x2[S]y2.

• Kleene closure: Given a transducer T, there exists a transducer T* such that
ϵ[T*]ϵ and if w[T*]y and x[T]z then wx[T*]yz]; x[T*]y only holds if one of these
two conditions holds.

• union: Given transducers T and S, there exists a transducer T ∪ S such that
x[T ∪ S]y iff x[T]y or x[S]y.

• intersection: Given transducers T and S, there exists a transducer T ∩ S such that
x[T ∩ S]y iff x[T]y and x[S]y. FSTs are not closed under intersection.

FST Operations

A Word to the Wise

• You will be asked to create FSTs in a homework assignment and on
an exam
• Sometimes, you will need to draw multiple FSTs and then combine

them using FST operations
• The most common of these is composition
• If you catch yourself saying “The output of FST A is the input to FST

B,” stop yourself and instead say “Compose FST A with FST B” or
simply “A ∘ B”

ML and Morphology

•Morphology is one area where—in practice—you may
want to use hand-engineered rules rather than
machine learning
•ML solutions for morphology do exist, including

interesting unsupervised methods
•However, unsupervised methods typically give you only

the parse of the word into morphemes (prefixes, root,
suffixes) rather than lemmas and inflectional features,
which may not be suitable for some applications

STEMMING → STEM

Stemming (“Poor Man’s
Morphology”)

Input: a word
Output: the word’s stem (approximately)

Examples from the Porter stemmer:
•-sses → -ss
•-ies → i
•-ss → s

no
noah

nob
nobility

nobis
noble

nobleman
noblemen
nobleness

nobler
nobles

noblesse
noblest

nobly
nobody

noces
nod

nodded
nodding

noddle
noddles

noddy
nods

no
noah
nob
nobil
nobi
nobl
nobleman
noblemen
nobl
nobler
nobl
nobless
noblest
nobli
nobodi
noce
nod
nod
nod
noddl
noddl
noddi
nod

Tokenization

Tokenization

Input: raw text
Output: sequence of tokens normalized for easier processing.

“Tokenization is easy, they said!
Just split on whitespace, they
said!”*

*Provided you’re working in English so words are (mostly)
whitespace-delimited, but even then…

The Challenge

Dr. Mortensen said tokenization of
English is “harder than you’ve
thought.” When in New York, he
paid $12.00 a day for lunch and
wondered what it would be like to
work for AT&T or Google, Inc.

Finite State Tokenization

•How can finite state techniques be used to
tokenize text?
•Why might they be useful?
•Can you think of other potential tokenization
techniques?

