
Natural Language Processing

Lecture 9:  Hidden Markov Models



Finding POS Tags

Bill directed    plays  about   English kings



Running Example

Bill directed    plays  about   English kings
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Running Example

Bill directed    plays  about   English kings

PropN
Verb
Noun

Adj
Verb

Verb
PlN

Prep
Adv
Part

Adj
Noun

PlN
Verb

p(t |Bill)

PropN 41 0.118

Verb 2 0.006

Noun 303 0.870

p(t|directed)

Adj 0 0.000

Verb 10 1.000

p(t|plays)

Verb 18 0.750

PlN 6 0.250

p(t|about)

Prep 1546 0.750

Adv 502 0.244

Part 12 0.006



Running Example:  POS

p(t |English)

Adj 11 0.344

Noun 21 0.656

Bill directed plays about English kings

PropN
Verb
Noun

Adj
Verb

Verb
PlN

Prep
Adv
Part

Adj
Noun

PlN
Verb

p(t |kings)

PlN 3 1.000

Verb 0 0.000



Hidden Markov Model
• q0:  start state (“silent”)
• qf:  final state (“silent”)
• Q:  set of “normal” states (excludes q0 and final qf)
• Σ:  vocabulary of observable symbols
• γi,j:  probability of transitioning to qj given current state qi
• ηi,w:  probability of emitting w ∈ Σ given current state qi

q
0 qf

Qn



HMM as a Noisy Channel

source

channel

y (tags)

decode

p(y) using {γi,j}
p(x | y) using {ηi,w} 

x (words)



States vs. Tags



Running Example (prior)

Bill directed plays about English kings
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p(PropN | <S> <S>) 0.202

p(Verb | <S> <S>) 0.023

p(Noun | <S> <S>) 0.040



Running Example

Bill directed plays about English kings

PropN
Verb
Noun

Adj
Verb

Verb
PlN

Prep
Adv
Part

Adj
Noun

PlN
Verb

p(PropN | <S> <S>) 0.202 p(Adj | <S> PropN) 0.004 0.00081

p(Verb | <S> PropN) 0.139 0.02808

p(Verb | <S> <S>) 0.023 p(Adj | <S> Verb) 0.062 0.00143

p(Verb | <S> Verb) 0.032 0.00074

p(Noun | <S> <S>) 0.040 p(Adj | <S> Noun) 0.005 0.00020

p(Verb | <S> Noun) 0.222 0.00888



Running Example
Bill directed plays about English kings
PropN
Verb
Noun

Adj
Verb

Verb
PlN

Prep
Adv
Part

Adj
Noun

PlN
Verb

p(Adj | <S> PropN) 0.00081 p(Verb | PropN Adj) 0.011 0.00001

p(PlN | PropN Adj) 0.157 0.00013

p(Verb | <S> PropN) 0.02808 p(Verb | PropN Verb) 0.162 0.00455
p(PlN | PropN Verb) 0.022 0.00062

p(Adj | <S> Verb) 0.00143 p(Verb | Verb Adj) 0.009 0.00001

p(PlN | Verb Adj) 0.246 0.00035

p(Verb | <S> Verb) 0.00074 p(Verb | Verb Verb) 0.078 0.00006

p(PlN | Verb Verb) 0.034 0.00003

p(Adj | <S> Noun) 0.00020 p(Verb | Noun Adj) 0.020 0.00000

p(PlN | Noun Adj) 0.103 0.00002

p(Verb | <S> Noun) 0.00888 p(Verb | Noun Verb) 0.176 0.00156

p(PlN | Noun Verb) 0.018 0.00016



Running Example (posterior)

Bill directed plays about English kings

PropN
Verb
Noun

Adj
Verb

Verb
PlN

Prep
Adv
Part

Adj
Noun

PlN
Verb

p(t |Bill) p(Bill | t)

PropN 41 0.118 0.00044

Verb 2 0.006 0.00002

Noun 303 0.870 0.00228



Running Example

Bill directed plays about English kings

PropN
Verb
Noun

Adj
Verb

Verb
PlN

Prep
Adv
Part

Adj
Noun

PlN
Verb

p(t |directed) p(directed |t)

Adj 0 0.000 0.00000

Verb 10 1.000 0.00008



Running Example

Bill directed plays about English kings

PropN
Verb
Noun

Adj
Verb

Verb
PlN

Prep
Adv
Part

Adj
Noun

PlN
Verb

p(t |plays) p(plays |t)

Verb 18 0.750 0.00014

PlN 6 0.250 0.00010



Combining Two Components

• Prior  p(Y)  the “language model”
•What is the likelihood of a tag sequence
• Posterior p(x|y) the “observation”
•What is likelihood of word given tag
•We want to find the max for both
• Bayes Rule  p(Y|X) = p(Y) p(X|Y) / p(X)



HMM as a Noisy Channel

source

channel

y (tags)

decode

p(y) using {γi,j}
p(x | y) using {ηi,w} 

x (words)



Part-of-Speech Tagging Task

• Input:  a sequence of word tokens x
•Output:  a sequence of part-of-speech tags y, 
one per word

HMM solution:  find the most likely tag 
sequence, given the word sequence.



If I knew the best state sequence for words x1 ... xn – 1, then I could figure out 
the last state.

That decision would depend only on state n – 1.

I don’t know that best sequence, but there are only |Q| options at n – 1.

So I only need the score of the best sequence up to n – 1, ending in each 
possible state at n – 1.   Call this V[n – 1, q] for q ∈ Q.

Ditto, at every other timestep n – 2, n – 3, ... 1. 

y⇤n = argmax
qi2Q

p(Y1 = y⇤1 , . . . , Yn�1 = y⇤n�1, Yn = qi | x)

= argmax
qi2Q

V [n� 1, y⇤n�1] · �y⇤
n�1,i

· ⌘i,xn · �i,f

= argmax
qi2Q

�y⇤
n�1,i

· ⌘i,xn · �i,f



Viterbi Algorithm 
(Recursive Equations)

V [0, q0] = 1

V [t, qj ] = max
qi2Q[{q0}

V [t� 1, qi] · �i,j · ⌘j,xt

goal = max
qi2Q

V [n, qi] · �i,f



Viterbi Algorithm (Procedure)
V[*, *] ← 0
V[0, q0] ← 1
for t = 1 ... n

foreach qj
foreach qi
V[t, qj] ← max{V[t, qj] , V[t - 1, qi] ⨉ γi,j⨉ ηi,xt}

foreach qi
goal  ← max{ goal, V[n, qi] ⨉ γi,f }

return goal



Running Example

Bill directed plays about English kings



Unknown words

•What is the PoS distribution of OOVs
• Assume overall distribution from corpora
• (Though less likely to be a Det, Conj, than 

Noun)
• Looking at the letters
• Starts with a capital letter
• Contains a number
• Ends in “ed” or “ing”



Part of Speech in other Languages

•Need labeled data
• Can be approximate, then correct it
•Morphologically rich languages
•Need to decompose tokens to morphemes
• Partly easier (but still PoS ambiguities)



Unsupervised PoS Tagging

•Words in the same context are the same Tag
• Find all  contexts:  w1 X w2
• Find most frequent Xs make them a tag
• Repeat until you want to stop
• For English: do this 20 times
• BE/HAVE  MR/MRS  AND/BUT/AT/AS 
• TO/FOR/OF/IN VERY/SO SHE/HE/IT/I/YOU
• But no Nouns/Verb/Adj distinctions



Brown Clustering

•Unsupervised Word Clustering
•Non-syntax derived clusters
• “Semantically” related classes
• For example in a database of Flight information
• To Shanghai, To Beijing, To London 
• To CLASS13, To CLASS13, To CLASS13
• Brown Clustering: 
• hierarchical agglomerative cluster.
•Gives a binary tree, so it can easily scaled



Part of Speech and Tagging

• Reduced set of linguistic tags
• Closed Class: Determiners, Pronouns …
•Open Class: Nouns, Verbs, Adjs, Adverbs
• Probabilistic Labeling
• Bayes/Noisy Channel
• P(tag|word) * P(tag)
•HMMs, Viterbi decoding
•Unsupervised tagging/clustering
•Use what is *best* for your task
• (and use what is available)


