Natural Language Processing

Lecture 9: Hidden Markov Models

Finding POS Tags

Bill directed plays about English kings

Running Example

Bill directed plays about English kings

PropN	Adj	Verb	Prep	Adj	PIN
Verb	Verb	PIN	Adv	Noun	Verb
Noun			Part		

Running Example

Bill directed plays about English kings

PropN	Adj	Verb	Prep	Adj	PIN
Verb	Verb	PIN	Adv	Noun	Verb
Noun			Part		

		p (t \| Bill)			$\mathrm{p}(\mathrm{t} \mid$ directed)			p(t\|plays)			$\mathrm{p}(\mathrm{t} \mid$ about $)$
PropN	41	0.118	Adj	0	0.000	Verb	18	0.750	Prep	1546	0.750
Verb	2	0.006	Verb	10	1.000	PIN	6	0.250	Adv	502	0.244
Noun	303	0.870	Part 12 0.006								

Running Example: POS

Bill directed plays about English kings

PropN	Adj	Verb	Prep	Adj	PIN
Verb	Verb	PIN	Adv	Noun	Verb
Noun			Part		

		$\mathrm{p}(\mathrm{t}$ \|English)
Adj	11	0.344
Noun	21	0.656

		$p(t \mid$ kings $)$
PIN	3	1.000
Verb	0	0.000

Hidden Markov Model

- q0: start state ("silent")
- qf: final state ("silent")
- Q: set of "normal" states (excludes $q 0$ and final $q f$)
- Σ : vocabulary of observable symbols
- vi,j: probability of transitioning to qj given current state qi
- ni,w: probability of emitting $w \in \Sigma$ given current state qi

HMM as a Noisy Channel

States vs. Tags

Running Example (prior)

Bill directed plays about English kings

PropN	Adj	Verb	Prep	Adj	PIN
Verb	Verb	PIN	Adv	Noun	Verb
Noun			Part		

$p($ PropN \| <S> <S>)	0.202
$p($ Verb \| <S> <S>)	0.023
p (Noun \| <S> <S>)	0.040

Running Example

Bill directed plays about English kings

PropN	Adj
Verb	Verb
Noun	

Verb	Prep
PIN	Adv
	Part

Adj	PIN
Noun	Verb

p(PropN \| <S> <S>)	0.202	p(Adj \| <S> PropN)	0.004	0.00081	
		$p($ Verb \| <S> PropN)	0.139	0.02808	
p (Verb \| <S> <S>)	0.023	p(Adj \| <S> Verb)	0.062	0.00143	
		p(Verb \| < $¢$ > Verb)	0.032	0.00074	
p(Noun \| <S> <S>)	0.040	p(Adj \\| <S> Noun)	0.005	0.00020	
		p(Verb \| < S > Noun)	0.222	0.00888	

Running Example

Bill directed plays about English kings

PropN	Adj	Verb	Prep	Adj	PIN
Verb	Verb	PIN	Adv	Noun	Verb
Noun			Part		

p(Adj \| <S> PropN)	0.00081	p(Verb \| PropN Adj)	0.011	0.00001
		p(PIN \| PropN Adj)	0.157	0.00013
p(Verb \| <S> PropN)	0.02808	p(Verb \| PropN Verb)	0.162	0.00455
		p(PIN \| PropN Verb)	0.022	0.00062
p(Adj \| <S> Verb)	0.00143	p(Verb \| Verb Adj)	0.009	0.00001
		p(PIN \| Verb Adj)	0.246	0.00035
p(Verb \| < S > Verb)	0.00074	p(Verb \| Verb Verb)	0.078	0.00006
		p(PIN \| Verb Verb)	0.034	0.00003
p(Adj \| <S> Noun)	0.00020	p(Verb \| Noun Adj)	0.020	0.00000
		p(PIN \| Noun Adj)	0.103	0.00002
p(Verb \| < S > Noun)	0.00888	p(Verb \| Noun Verb)	0.176	0.00156
		$p($ PIN \| Noun Verb)	0.018	0.00016

Running Example (posterior)

Bill directed plays about English kings

PropN	Adj	Verb	Prep	Adj	PIN
Verb	Verb	PIN	Adv	Noun	Verb
Noun			Part		

		p (t \mid Bill)	p (Bill\|t)
PropN	41	0.118	0.00044
Verb	2	0.006	0.00002
Noun	303	0.870	0.00228

Running Example

Bill directed plays about English kings

PropN	Adj	Verb	Prep	Adj	PIN
Verb	Verb	PIN	Adv	Noun	Verb
Noun			Part		

		$\mathrm{p}(\mathrm{t}$ \|directed)	p (directed \|t)
Adj	0	0.000	0.00000
Verb	10	1.000	0.00008

Running Example

Bill directed plays about English kings

PropN	Adj	Verb	Prep	Adj	PIN
Verb	Verb	PIN	Adv	Noun	Verb
Noun			Part		

		$p(t$ plays)	$p($ plays \|t)
Verb	18	0.750	0.00014
PIN	6	0.250	0.00010

Combining Two Components

- Prior $\mathrm{p}(\mathrm{Y})$ the "language model"
- What is the likelihood of a tag sequence
- Posterior p(x|y) the "observation"
-What is likelihood of word given tag
- We want to find the max for both
- Bayes Rule $p(Y \mid X)=p(Y) p(X \mid Y) / p(X)$

HMM as a Noisy Channel

Part-of-Speech Tagging Task

- Input: a sequence of word tokens \boldsymbol{x}
- Output: a sequence of part-of-speech tags \boldsymbol{y}, one per word

HMM solution: find the most likely tag sequence, given the word sequence.

If I knew the best state sequence for words $x 1 \ldots x n-1$, then I could figure out the last state.

That decision would depend only on state $n-1$.

$$
\begin{aligned}
y_{n}^{*} & =\arg \max _{q_{i} \in Q} p\left(Y_{1}=y_{1}^{*}, \ldots, Y_{n-1}=y_{n-1}^{*}, Y_{n}=q_{i} \mid \boldsymbol{x}\right) \\
& =\arg \max _{q_{i} \in Q} V\left[n-1, y_{n-1}^{*}\right] \cdot \gamma_{y_{n-1}^{*}, i} \cdot \eta_{i, x_{n}} \cdot \gamma_{i, f} \\
& =\arg \max _{q_{i} \in Q} \gamma_{y_{n-1}^{*}, i} \cdot \eta_{i, x_{n}} \cdot \gamma_{i, f}
\end{aligned}
$$

I don't know that best sequence, but there are only $|Q|$ options at $n-1$.

So I only need the score of the best sequence up to $n-1$, ending in each possible state at $n-1$. Call this $V[n-1, q]$ for $q \in Q$.

Ditto, at every other timestep $n-2, n-3, \ldots 1$.

Viterbi Algorithm (Recursive Equations)

$$
\begin{aligned}
V\left[0, q_{0}\right] & =1 \\
V\left[t, q_{j}\right] & =\max _{q_{i} \in Q \cup\left\{q_{0}\right\}} V\left[t-1, q_{i}\right] \cdot \gamma_{i, j} \cdot \eta_{j, x_{t}} \\
\text { goal } & =\max _{q_{i} \in Q} V\left[n, q_{i}\right] \cdot \gamma_{i, f}
\end{aligned}
$$

Viterbi Algorithm (Procedure)

```
V[*,*]}\leftarrow
V[0,q0]}<
for }t=1\ldots
    foreach qj
        foreach qi
            V[t,qj]}\leftarrow\operatorname{max}{V[t,qj],V[t-1,qi]\timesvi,j\times\etai,xt
foreach qi
    goal < max{ goal, V[n,qi] }\times vi,f
return goal
```


Running Example

Bill directed plays about English kings

Unknown words

- What is the PoS distribution of OOVs
- Assume overall distribution from corpora
- (Though less likely to be a Det, Conj, than Noun)
- Looking at the letters
- Starts with a capital letter
- Contains a number
- Ends in "ed" or "ing"

Part of Speech in other Languages

- Need labeled data
- Can be approximate, then correct it
- Morphologically rich languages
- Need to decompose tokens to morphemes
- Partly easier (but still PoS ambiguities)

Unsupervised PoS Tagging

- Words in the same context are the same Tag
- Find all contexts: w1 X w2
- Find most frequent Xs make them a tag
- Repeat until you want to stop
- For English: do this 20 times
- BE/HAVE MR/MRS AND/BUT/AT/AS
- TO/FOR/OF/IN VERY/SO SHE/HE/IT/I/YOU
- But no Nouns/Verb/Adj distinctions

Brown Clustering

- Unsupervised Word Clustering
- Non-syntax derived clusters
- "Semantically" related classes
- For example in a database of Flight information
- To Shanghai, To Beijing, To London
- To CLASS13, To CLASS13, To CLASS13
- Brown Clustering:
- hierarchical agglomerative cluster.
- Gives a binary tree, so it can easily scaled

Part of Speech and Tagging

- Reduced set of linguistic tags
- Closed Class: Determiners, Pronouns ...
- Open Class: Nouns, Verbs, Adjs, Adverbs
- Probabilistic Labeling
- Bayes/Noisy Channel
- P(tag |word) * P(tag)
- HMMs, Viterbi decoding
- Unsupervised tagging/clustering
- Use what is *best* for your task
- (and use what is available)

