Overview

- **Speech vs Text**
 - Same but different

- **Core Speech Technologies**
 - Speech Recognition
 - Speech Synthesis
 - Dialog Systems
Pronunciation Lexicon

- List of words and their pronunciation
 - (“pencil” n (p eh1 n s ih l))
 - (“table” n (t ey1 b ax l))
- Need the right phoneme set
- Need other information
 - Part of speech
 - Lexical stress
 - Other information (Tone, Lexical accent …)
 - Syllable boundaries
Homograph Representation

- **Must distinguish different pronunciations**
 - (“project” n (p r aa1 jh eh k t))
 - (“project” v (p r ax jh eh1 k t))
 - (“bass” n_music (b ey1 s))
 - (“bass” n_fish (b ae1 s))

- **ASR multiple pronunciations**
 - (“route” n (r uw t))
 - (“route(2)” n (r aw t))
Pronunciation of Unknown Words

- How do you pronounce new words
- 4% of tokens (in news) are new
- You can’t synthesis them without pronunciations
- You can’t recognize them without pronunciations
- Letter-to-Sounds rules
- Grapheme-to-Phoneme rules
Hand written rules

-
 \[[\text{LeftContext}] \ X \ [\text{RightContext}]\] -> Y
- e.g. Pronunciation of letter “c”
- c [h r] -> k
- c [h] -> ch
- c [i] -> s
- c -> k

LTS: Hand written
Need an existing lexicon
 • Pronunciations: words and phones
 • But different number of letters and phones

Need an alignment
 • Between letters and phones
 • checked -> ch eh k t
LTS: alignment

- **checked -> ch eh k t**

<table>
<thead>
<tr>
<th>c</th>
<th>h</th>
<th>e</th>
<th>c</th>
<th>k</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch</td>
<td>_</td>
<td>eh</td>
<td>k</td>
<td>_</td>
<td>_</td>
<td>t</td>
</tr>
</tbody>
</table>

- **Some letters go to nothing**

- **Some letters go to two phones**
 - box -> b aa k-s
 - table -> t ey b ax-l -
Find alignment automatically

- **Epsilon scattering**
 - Find all possible alignments
 - Estimate $p(L,P)$ on each alignment
 - Find most probable alignment

- **Hand seed**
 - Hand specify allowable pairs
 - Estimate $p(L,P)$ on each possible alignment
 - Find most probable alignment

- **Statistical Machine Translation (IBM model 1)**
 - Estimate $p(L,P)$ on each possible alignment
 - Find most probable alignment
Not everything aligns

- 0, 1, and 2 letter cases
 - e -> epsilon “moved”
 - x -> k-s, g-z “box” “example”
 - e -> y-uw “askew”

- Some alignments aren’t sensible
 - dept -> d ih p aa r t m ax n t
 - cmu -> s iy eh m y uw
Training LTS models

- **Use CART trees**
 - One model for each letter

- **Predict phone (epsilon, phone, dual phone)**
 - From letter 3-context (and POS)

 - # # # c h e c c -> ch
 - # # c h e c k k -> _
 - # c h e c k e c k e -> eh
 - c h e c k e d d -> k
LTS results

- **Split lexicon into train/test 90%/10%**
 - i.e. every tenth entry is extracted for testing

<table>
<thead>
<tr>
<th>Lexicon</th>
<th>Letter Acc</th>
<th>Word Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>OALD</td>
<td>95.80%</td>
<td>75.56%</td>
</tr>
<tr>
<td>CMUDICT</td>
<td>91.99%</td>
<td>57.80%</td>
</tr>
<tr>
<td>BRULEX</td>
<td>99.00%</td>
<td>93.03%</td>
</tr>
<tr>
<td>DE-CELEX</td>
<td>98.79%</td>
<td>89.38%</td>
</tr>
<tr>
<td>Thai</td>
<td>95.60%</td>
<td>68.76%</td>
</tr>
</tbody>
</table>
For letter V:
if (n.name is v)
 return _
 if (n.name is #)
 if (p.p.name is t)
 return f
 return v
 return v
But we need more than phones

- **What about lexical stress**
 - $p\ r\ aa1\ j\ eh\ k\ t \rightarrow p\ r\ aa\ j\ eh1\ k\ t$

- **Two possibilities**
 - A separate prediction model
 - Join model – introduce $eh/eh1$ (BETTER)

<table>
<thead>
<tr>
<th></th>
<th>LTP+S</th>
<th>LTPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L no S</td>
<td>96.36%</td>
<td>96.27%</td>
</tr>
<tr>
<td>Letter</td>
<td>---</td>
<td>95.80%</td>
</tr>
<tr>
<td>W no S</td>
<td>76.92%</td>
<td>74.69%</td>
</tr>
<tr>
<td>Word</td>
<td>63.68%</td>
<td>74.56%</td>
</tr>
</tbody>
</table>
Does it really work

- 40K words from Time Magazine
 - 1775 (4.6%) not in OALD
 - LTS gets 70% correct (test set was 74%)

<table>
<thead>
<tr>
<th></th>
<th>Occurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names</td>
<td>1360</td>
<td>76.6</td>
</tr>
<tr>
<td>Unknown</td>
<td>351</td>
<td>19.8</td>
</tr>
<tr>
<td>US Spelling</td>
<td>57</td>
<td>3.2</td>
</tr>
<tr>
<td>Typos</td>
<td>7</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Spoken Dialog Systems

- **Information giving**
 - Flights, buses, stocks weather
 - Driving directions
 - News

- **Information navigators**
 - Read your mail
 - Search the web
 - Answer questions

- **Provide personalities**
 - Game characters (NPC), toys, robots, chatbots

- **Speech-to-speech translation**
 - Cross-lingual interaction
Dialog Types

- **System initiative**
 - Form-filling paradigm
 - Can switch language models at each turn
 - Can “know” which is likely to be said

- **Mixed initiative**
 - Users can go where they like
 - System or user can lead the discussion

- **Classifying:**
 - Users can say what they like
 - But really only “N” operations possible
 - E.g. AT&T? “How may I help you?”

- **Non-task oriented**
System Initiative

- **Let’s Go Bus Information**
 - 412 268 3526
 - *Provides bus information for Pittsburgh*

- **Tell Me**
 - *Company getting others to build systems*
 - *Stocks, weather, entertainment*
 - 1 800 555 8355
SDS Components

- **Interpretation**
 - Parsing and Information Extraction
 - *(Ignore politeness and find the departure stop)*

- **Generation**
 - *From SQL table output from DB*
 - *Generate “nice” text to say*
Siri-like Assistants

- **Advantages**
 - Hard to type/select things on phone
 - Can use context (location, contacts, calendar)

- **Target common tasks**
 - Calling, sending messages, calendar
 - Fall back on google lookup
“Call John”
“Call John, Bill and Mary and setup a meeting sometime next week about Plan B that’s fits my schedule”
“Make a reservation at a local Chinese restaurant for 4 at 8pm.”
“You should call your mom as its her birthday”
“I have sent flowers to your mom as its her birthday”
CALO (DARPA)

- **Cognitive Assistant that Learns Online**
 - DARPA project (2003-2008)
 - Led by SRI (involved many sites, including CMU)

- **Personal Assistant that Learns (Pal)**
 - Answers questions
 - Learn from experience
 - Take initiative

- **Spin-off company -> SIRI**
 - Acquired by Apple in April 2010
SPDA: Platform

- Desktop
 - Computational power

- Phone (non-smartphone)
 - General Magic
 - Was handheld, became phone based
 - Led into GM’s OnStar

- Smartphone
 - Local to device
 - With Cloud
Smartphone + Cloud

- **Smartphone**
 - Know about user
 - Contacts, Schedule etc
 - Same speaker
 - Some computation possible on device

- **Cloud**
 - Learn from multiple examples
 - Retrain acoustic/language/understanding models
Voice Search and User Feedback

- **Voice Search**
 - Google, Bing, Vlingo, Apple

- **Get users to help label the data**
 - Listen to user
 - Show best options
 - They select which one is correct

- **Find out how users actually speak**
 - Full sentences vs “search terms”
 - How do English speakers say ethnic names
Voice Search: Simplifications

- Too many words ...
- Context
 - Where you are (location: home/not home)
 - What is on your phone (contacts)
 - What you’ve said before
Have a character
- Calls you by name (you choose)
- Pushy, helpful, nagging …
- Allow user choice

Personalize it
- May form better relationship with it

e.g. Siri
- US and UK are female/male
Make it do things well

- **Targeted apps**
 - Chose what it will do well
- **Say, 12 different apps**
 - Have target (hand written) interaction
 - Chose what fields you need, and how to interact with the back end data
 - If all else fails dump result in Google
- **Hardware aid**
 - Infra-red detector for VAD
Make sure people know its there

- (Voice search has been on PDA’s for years)
- Get a *lot* of people to use it
- Give “silly” examples
 - People will repeat them, you can adapt your system and expect them to say them
Know Your Users

- Young educated
- Standard English speakers
 - (Non-native too?)
- Can you train them to use it better
 - Get them to adapt
Will it work?

- Will people talk in public
 - Talking on the phone is now acceptable
 - Talking to the phone …

- Will people continue to use it
 - Cool at first, but easier to use menus
 - Only use for setting alarms

- Long term use …

- But others may join in anyway
Chatbots and NLP

- Chatting about “nothing”
 - Well not nothing, but not an explicit task
- Learn response from data
 - Mine forums (e.g. reddit, twitter)
 - Find “appropriate” responses
- Can be successful: Xiao Ice
 - Can go awry: learning the wrong thing
Speech and NLP

- **Same statistical methods**
 - Bayes, n-gram, classification trees

- **NLP in speech**
 - POS tagging (in new languages)
 - Parsing (Syntactic and Prosodic)
 - Information extraction
 - Dialog/Discourse analysis
 - “ASR output” as “noisy” text
Generating Poetry
- Healthcare messages for non-literate
- Appropriate rhyming and cultural references

Emotion ID
- Is this person angry when they are calling us

Singing
11-492 Speech Processing

- Fall Class
- Covers
 - Speech Recognition, Synthesis, Dialog systems
 - Speech ID, evaluation
 - Building real systems (ASR, TTS, SDS)