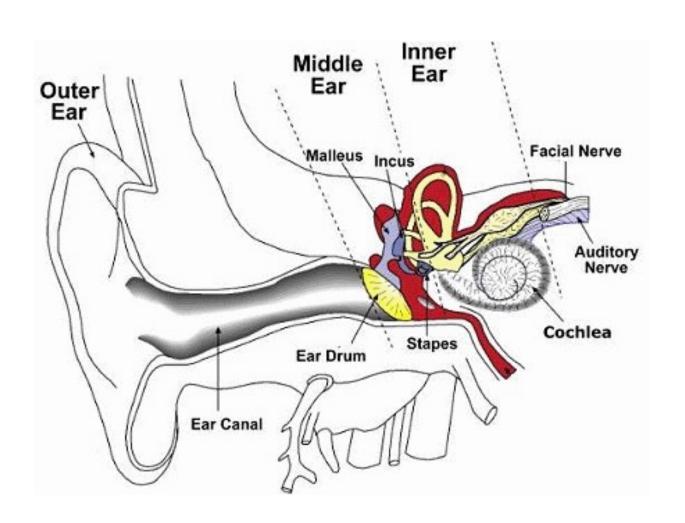

Speech Processing

Using Speech with Computers

Overview

- Speech vs Text
 - Same but different
- Core Speech Technologies
 - Speech Recognition
 - Speech Synthesis
 - Dialog Systems
 - Other Speech Processing


The vocal tract

From meat to voice

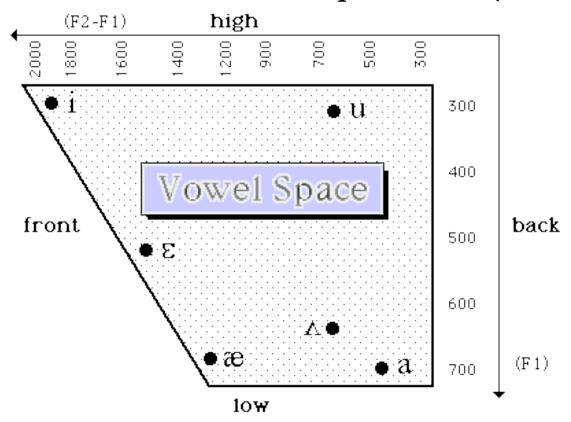
- Blow air through lungs
 - Vibrate larynx
 - Vocal tract shape defines resonance
 - Obstructions modify sound
 - → Tongue, teeth, lips, velum (nasal passage)

The ear

From sound to brain waves

- Sound waves
 - Vibrate ear drum
 - Cause fluid in cochlear to vibrate
 - Spiral cochlear
 - → Vibrate hairs inside cochlear
 - → Different frequencies vibrate different hairs
 - → Converts time domain to frequency domainS

Phonemes


- Defined as fundamental units of speech
 - If you change it, it (can) change the meaning

```
"pat" to "bat"

"pat" to "pam"
```

Vowel Space

One or two banded frequencies (formants)

English (US) Vowels

AA	wAshington	AE	fAt, bAd
AH	bUt, hUsh	AO	IAWn, mAll
AW	hOW, sOUth	AX	About, cAnoe
AY	hlde, bUY	EH	gEt, fEAther
ER	makER, sEARch	EY	gAte, Elght
IH	blt, shlp	IY	bEAt, shEEp
OW	lOne, nOse	OY	tOY, OYster
UH	fUII	UW	fOOI

English Consonants

- Stops: P, B, T, D, K, G
- Fricatives: F, V, HH, S, Z, SH, ZH
- Affricatives: CH, JH
- Nasals: N, M, NG
- Glides: L, R, Y, W

- Note: voiced vs unvoiced:
 - P vs B, F vs V

Not all variation is Phonetic

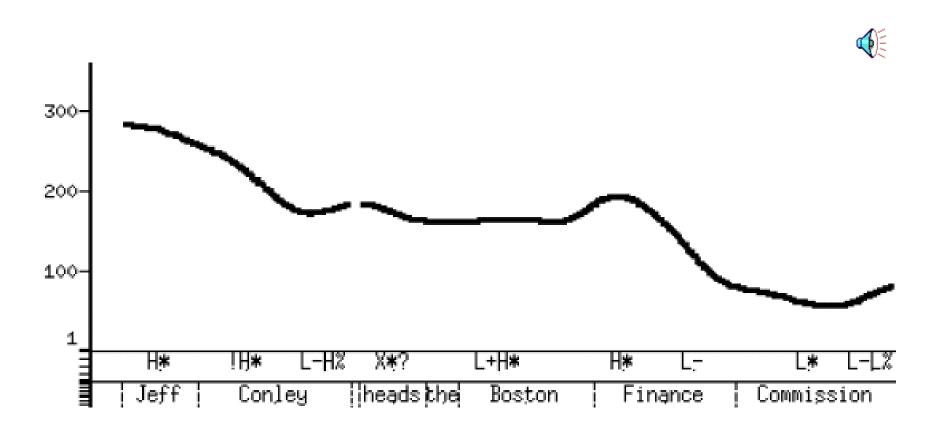
- Phonology: linguistically discrete units
 - May be a number of different ways to say them
 - /r/ trill (Scottish or Spanish) vs US way
- Phonetics vs Phonemics
 - Phonetics: discrete units
 - Phonemics: all sounds
- /t/ in US English: becomes "flap"
 - "water" / w ao t er /
 - "water" / w ao dx er /

Dialect and Idiolect

- Variation within language (and speakers)
- Phonetic
 - "Don" vs "Dawn", "Cot" vs "Caught"
 - R deletion (Haavaad vs Harvard)
- Word choice:
 - Y'all, Yins
 - Politeness levels

Not all languages are the same

- Asperated stops (Korean, Hindi)
 - P vs PH
 - English uses both, but doesn't care
 - Pot vs sPot (place hand over mouth)
- L-R in Japanese not phonological
- US English dialects:
 - Mary, Merry, Marry
- Scottish English vs US English
 - No distinction between "pull" and "pool"
 - Distinction between: "for" and "four"


Different language dimensions

- Vowel length
 - Bit vs beat
 - Japanese: shujin (husband) vs shuujin (prisoner)
- Tones
 - F0 (tune) used phonetically
 - Chinese, Thai, Burmese
- Clicks
 - Xhosa

Prosody

- Intonation
 - Tune
- Duration
 - How long/short of each phoneme
- Phrasing
 - Where the breaks are
- Used for:
 - Style, emphasis, confidence etc

Intonation Contour

Intonation Information

- Large pitch range (female)
- Authoritive since goes down at the end
 - News reader
- Emphasis for Finance H*
- Final has a raise more information to come
- Female American newsreader from WBUR
- (Boston University Radio)

Words and Above

- Words
 - The things with space around them (sort of)
 - Chinese, Thai, Japanese doesn't use spaces
- Words aren't always what they seem
 - Can you pass the salt?
 - Boston. Boston! Boston?
 - Yeah, right
- Multiple ways to say the same thing:
 - I want to go to Boston.
 - Yes

Speech Recognition

- Two major components
 - Acoustic Models
 - Language Models
- Accuracy various with
 - Speaker, language, dialect
 - Microphone type, environment
 - Speaking style:
 - Good Recognition:
 - → Head mounted mike, controlled language, careful speaker
 - Not so good recognition:
 - → Remote mike, chatting between friends, in open cafe

But not just acoustics

- But not all phones are equi-probable
- Find word sequences that maximizes

$$P(W \mid O)$$

Using Bayes' Law

$$\frac{P(W)P(O|W)}{P(O)}$$

- Combine models
 - Us HMMs to provide

$$P(O \mid W)$$

Use language model to provide

Speech Synthesis

- Three Levels
 - Text analysis
 - → From characters to words
 - Prosody and Pronunciation
 - → From words to phonemes and intonation
 - Waveform generation
 - → From phonemes to waveforms

Text Analysis

- This is a pen.
- My cat who lives dangerously has nine lives.
- He stole \$100 from the bank.
- He stole 1996 cattle on 25 Nov 1996.
- He stole \$100 million from the bank.
- It's 13 St. Andrew St. near the bank.
- Its a PIII 1.5Ghz, 512MB RAM, 160Gb SATA, (no IDE) 24x cdrom and 19" LCD.
- My home pgae is http://www.geocities.com/awb/.

Waveform Generation

Formant synthesis

- **(**)
- Random word/phrase concatenation
- **(**)

Phone concatenation

Diphone concatenation

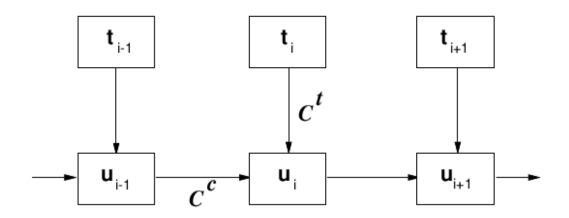
Sub-word unit selection

() [

Cluster based unit selection

Statistical Parametric Synthesis

() [


Wavenet Neural Synthesis

Speech Synthesis Techniques

- Unit selection
- Statistical parameter synthesis
- Neural Synthesis
- Automated voice building
 - Database design
 - Language portability
- Voice conversion

Unit Selection

- Target cost and Join cost [Hunt and Black 96]
 - Target cost is distance from desired unit to actual unit in the databases
 - Based on phonetic, prosodic metrical context
 - Join cost is how well the selected units join

Clustering Units

• Cluster units [Donovan et al 96, Black et al 97]

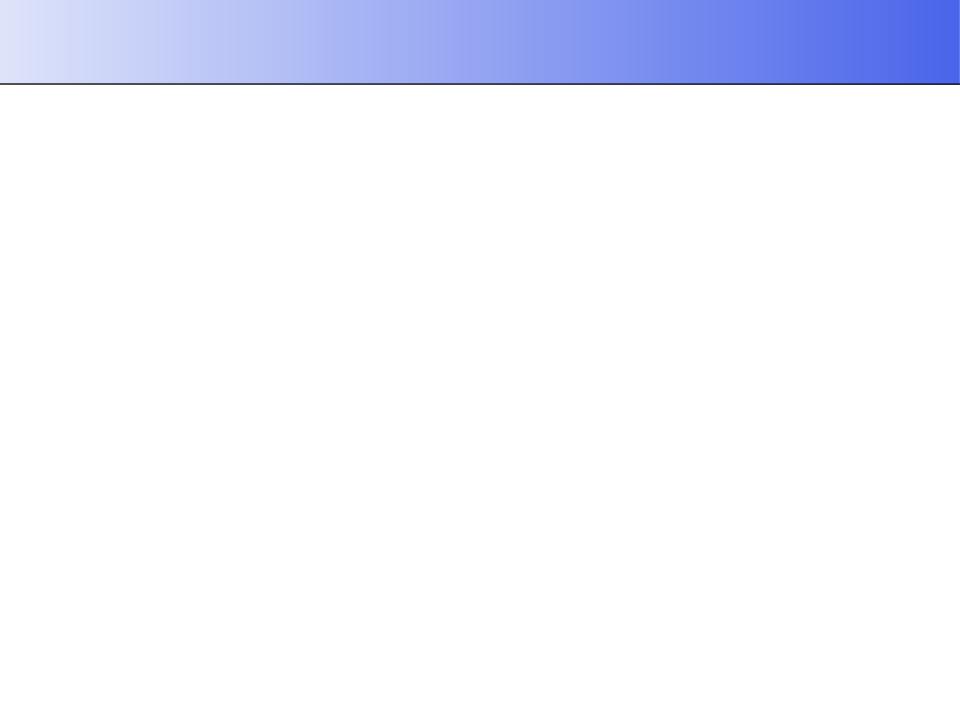
$$\begin{aligned} A dist(U,V) &= \begin{cases} \text{if } |V| > |U| & A dist(V,U) \\ \frac{WD*|U|}{|V|} * \sum\limits_{i=1}^{|U|} \sum\limits_{j=1}^{n} \frac{W_{j}.(abs(F_{ij}(U) - F_{(i*|V|/|U|)j}(V)))}{SD_{j} * n * |U|} \\ |U| &= \text{number of frames in } U \\ F_{xy}(U) &= \text{parameter } y \text{ of frame } x \text{ of unit } U \\ SD_{j} &= \text{standard deviation of parameter } j \\ W_{j} &= \text{weight for parameter } j \\ WD &= \text{duration penalty} \end{aligned}$$

Unit Selection Issues

- Cost metrics
 - Finding best weights, best techniques etc
- Database design
 - Best database coverage
- Automatic labeling accuracy
 - Finding errors/confidence
- Limited domain:
 - Target the databases to a particular application
 - Talking clocks
 - Targeted domain synthesis

Old vs New

Unit Selection: large carefully labelled database quality good when good examples available quality will sometimes be bad no control of prosody Parametric Synthesis: smaller less carefully labelled database quality consistent resynthesis requires vocoder, (buzzy) can (must) control prosody model size much smaller than Unit DB


Parametric Synthesis

Probabilistic Models

Simplification

$$argmax(P(o_0|W), P(o_1|W), ..., P(o_n|W))$$

- Generative model
 - Predict acoustic frames from text

