Natural Language Processing

Lecture 19: Compositional Semantics and Semantic Parsing
Meaning

• The recent lectures dealt with some issues around word meaning, primarily:
 • Relationships between words and word similarity
 • Word sense disambiguation
 • Predicates and their arguments
• Today: meaning of NL (English) sentences
Key Challenge of Meaning

• We actually say very little - much more is left unsaid, because it’s assumed to be widely known.

• Examples:
 • Grading assignments
 • Restaurant menus
 • Learning to use a new piece of software
Meaning Representation
Languages

• Symbolic representation that does two jobs:
 • Conveys the meaning of a sentence
 • Represents (some part of) the world

• Today we’ll use first-order logic.
A MRL Should Be Able To ...

- Verify a query against a knowledge base
 - Do CMU students follow politics?
- Eliminate ambiguity
 - CMU students enjoy visiting Senators.
- Cope with vagueness
 - Sally heard the news.
- Cope with many ways of expressing the same meaning (canonical forms)
 - The candidate evaded the question.
 - The question was evaded by the candidate.
- Draw conclusions based on the knowledge base
 - Who could become the 48th president?
- Represent all of the meanings we care about
Model-Theoretic Semantics

• Model: a simplified representation of the world: objects, properties, relations (domain).

• Non-logical vocabulary
 • Each element denotes a well-defined part of the model
 • Such a mapping is called an interpretation
A Model

• **Domain**: Noah, Karen, Rebecca, Frederick, Green Mango, Casbah, Udipi, Thai, Mediterranean, Indian

• **Properties**: Green Mango and Udipi are crowded; Casbah is expensive

• **Relations**: Karen likes Green Mango, Frederick likes Casbah, everyone likes Udipi, Green Mango serves Thai, Casbah serves Mediterranean, and Udipi serves Indian

• $n, k, r, f, g, c, u, t, m, i$

• Crowded = \{g, u\}

• Expensive = \{c\}

• Likes = \{(k, g), (f, c), (n, u), (k, u), (r, u), (f, u)\}

• Serves = \{(g, t), (c, m), (u, i)\}
Some English

• Karen likes Green Mango and Frederick likes Casbah.
• Noah and Rebecca like the same restaurants.
• Noah likes expensive restaurants.
• Not everybody likes Green Mango.

• What we want is to be able to represent these statements in a way that lets us compare them to our model.

• **Truth-conditional semantics**: need operators and their meanings, given a particular model.
First-Order Logic

- **Terms** refer to elements of the domain: **constants, functions, and variables**
 - Noah, SpouseOf(Karen), X

- **Predicates** are used to refer to sets and relations
 - Serves(Casbah, Mediterranean)

- Logical connectives: \(\land \) (and), \(\lor \) (or), \(\neg \) (not), \(\Rightarrow \) (implies), ...

- Quantifiers ...
Quantifiers in FOL

- Two ways to use variables:
 - refer to one anonymous object from the domain (existential; \(\exists \); “there exists”)
 - refer to all objects in the domain (universal; \(\forall \); “for all”)

- a restaurant near CMU that serves Indian food
 \(\exists x \) Restaurant\((x) \), Near\((x, \text{CMU}) \), Serves\((x, \text{Indian}) \)

- All expensive restaurants are far from campus
 \(\forall x \) Restaurant\((x) \), Expensive\((x) \) \(\Rightarrow \) \(\neg \)Near\((x, \text{CMU}) \)
Extension: Lambda Notation

• A way of making anonymous functions.

• \(\lambda x. (\text{some expression mentioning } x) \)

 • Example: \(\lambda x. \text{Near}(x, \text{CMU}) \)

 • Deeper example: \(\lambda x. \lambda y. \text{Serves}(y, x) \)

• Lambda reduction: substitute for the variable.

 • \((\lambda x. \text{Near}(x, \text{CMU}))(\text{Lulu’s Noodles}) \) becomes
 \(\text{Near}(\text{Lulu’s Noodles}, \text{CMU}) \)
Inference

• Big idea: extend the knowledge base, or check some proposition against the knowledge base.

• **Forward chaining** with modus ponens:
 • given α and $\alpha \Rightarrow \beta$, we know β.

• **Backward chaining** takes a query β and looks for propositions α and $\alpha \Rightarrow \beta$ that would prove β.
 • Not the same as backward reasoning (abduction).
 • Used by Prolog

• Both are sound, neither is complete.
Lots More To Say About MRLs!

- See chapter 17 for more about:
 - Representing events and states in FOL
 - Dealing with optional arguments (e.g., “eat”)
 - Representing time
 - Non-FOL approaches to meaning
First-Order Worlds, Then and Now

• Interest in this topic waned during the 1990s and 2000s.
• It’s come back, with the rise of semi-structured databases like Wikipedia.
 • Lay contributors to these databases may be helping us to solve the knowledge acquisition problem.
• Also, lots of research on using NLP, information extraction, and machine learning to grow and improve knowledge bases from free text data.
• “Read the Web” project here at CMU.
Connecting Syntax and Semantics
Semantic Analysis

- Goal: transform a NL statement into MRL (today, FOL).
- We’re assuming a very literal, inference-free version of meaning!
- Sometimes called “semantic parsing.”
Compositionality

• The meaning of an NL phrase is determined by combining the meaning of its sub-parts.

• There are obvious exceptions ("hot dog," "straw man," "New York," etc.).

• Big idea: start with parse tree, build semantics on top using FOL with λ-expressions.
An Example

• Noah likes expensive restaurants.

• $\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{ Likes}(\text{Noah, x})$
An Example

• Noah likes expensive restaurants.

\[\forall x \text{ Restaurant}(x), \text{Expensive}(x) \Rightarrow \text{Likes}(Noah, x) \]
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$

$$\text{NP} \rightarrow \text{NNP} \{ \text{NNP.sem} \}$$
$$\text{NP} \rightarrow \text{JJ NNS} \{ \lambda x. \text{JJ.sem}(x) \land \text{NNS.sem}(x) \}$$
An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x), Expensive(x) ⇒ Likes(Noah, x)
An Example

- Noah likes expensive restaurants.
- $\forall x \text{Restaurant}(x), \text{Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{ Likes}(\text{Noah}, x)$
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$
An Example

• Noah likes expensive restaurants.

• $\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$
Alternative (Following SLP)

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$

$S \rightarrow \text{NP VP} \{ \text{NP.sem(VP.sem)} \}$
Quantifier Scope Ambiguity

• Every man loves a woman.

• $\forall u \text{ Man}(u) \Rightarrow \exists x \text{ Woman}(x) \land \text{ Loves}(u, x)$
• $\exists x \text{ Woman}(x) \land \forall u \text{ Man}(u) \Rightarrow \text{ Loves}(u, x)$
This Isn’t Quite Right!

- “Every man loves a woman” really is ambiguous.
- A seat was available for every customer
- A toll free number was available for every customer
- A secretary phoned up each director
- A letter was sent to each customer
- This gives only one of the two meanings.
- One approach is to delay the quantifier processing until the end, then permit any ordering.
Matching Syntax and Semantics

• Combinatorial Categorial Grammar (CCG)

• Five grammar rules (only)
 • Forward application \(A/B + B = A \)
 • Backward application: \(B + A\backslash B = A \)
 • Composition: \(A/B + B/C = A/C \)
 • Conjunction: \(A \ CONJ A' = A \)
 • Type Raising \(A = X/(X\backslash A) \)
CCG Parsing

John = np
Mary = np
likes = (s\np)/np

Forward application
X/Y Y => X

Backward application
Y X\Y => X

Thus
John likes Mary
np (s\np)/np) np

---------- Forward
 s\np
---------- Backward
 s
CCG Parsing

a, the np/n
old n/n
in (np\np)/np
man, ball, park n
kicked (s\np)/np

the old man kicked a ball in the park
np/n n/n n (s\np)/np np/n n (np\np)/np np/n n

n

np

np

np\np

np

s\np

s
CCG Parsing and Semantics

\[A/B:S + B:T = A:S.T \]
\[B:T + A\backslash B:S = A:S.T \]

John np:j
walks (s\np):lambda X walks(X)

John \hspace{2cm} \text{walks}
np:j \hspace{1cm} s\np:lambda X \hspace{.5cm} \text{walks}(X)

\[\hspace{4cm} \text{----------------} \]
\[\hspace{4cm} s : \text{walks}(j) \]

\[B:T + A\backslash B:S = A:S . T \]
np:j + s\np:lambda X \hspace{1cm} \text{walks}(X)
s : \text{lambda X \hspace{.5cm} \text{walks}(X) . j}
s : \text{walks}(j) \]
CCG Parsing and Semantics

John np:j
Mary np:m
likes (s\np)/np: lambda Y lambda X likes(X,Y)

John np:j (s\np)/np: lambda Y lambda X likes(X,Y) m

s\np: lambda X likes(X,m)

s likes(j,m)

lambda Y lambda X likes(X,Y) . m
lambda X likes(X,m)

lambda X likes(X,m) . j
likes(j,m)
Probabilistic CCGs

• Derive lexical entries from data
 • Find which entries allow parsing (constrained)
• From data with logical forms
 • Find out possible parses that derived those forms
 • But needs sentence → logical form training data
• But can work on targeted domains
SEMAFOR

• Semantic parser (Das et al 2014)
• Uses FrameNET to identify frames
• Fills in roles for a sentence
Other Semantic Parsers

• Event and Entity extraction
• Semantic Role Labelling (sort of semantics)
• Intent and Slot classifiers
• More superficial – but
• Finds canonical meaning from sentences