Natural Language Processing

Lecture 17: Contextualized Embeddings
Classification

Set of documents → Topic
Preprocessing documents
Train/dev/test splits
Choose embedding options
Choose model architecture
 • Hyperparameters
 • Train and check it converges
 • Do experiments
• Error analysis
• Check with test set
The task

• Set of news articles plus topic
 • A few paragraphs (well written text)
 • 1 of 5: Business, Politics, Sport, Arts, Tech
• How much data?
• Is it “fair” data?
• Is it a “predictable” task
 • Too easy or too hard
Preprocessing

• Into some normal form
 • Remove formatting?
 • Upper/Lower case,
 • Remove numbers/dates/names?
• Word embedding with further tokenize
• How will your (ultimate) test data be different
Class distribution

• What is the class distribution
 • Is it balanced (near balanced)?
 • Should you merge/ignore any classes?
 • Should you exclude data
 • Should you resample data
Train/dev/test split

• (Maybe) 80% 10% 10% split
 • First 80%, next 10%, next 10%
 • Select batches throughout data
• Other restrictions
 • (News) separate days/weeks
 • Separate authors, subjects
 • Does dev & test reflect ultimate test set
• Not trying to get test set with highest score
• Trying to get highest number on test set
Choose your embedding technique

- word2vec/Glove/BERT/train your own
- Does your data match pretraining data
- Do you have special treatment of tokens
 - Local meanings (e.g. place/people names)
- Is it all English
- Other BERT-like models?
 - xln-roberta, mbert
- Size of embedding
- Document vs word embeddings
Choose your architecture

• Feed forward, CNN, LSTM, other
• Loss function: perplexity, accuracy, F-score, ...
• Fixed embeddings or varying
• Hyperparameters:
 • vector sizes, dropout, SGD, batch size
• Higher level things:
 • GANs, Reinforcement Learning
• Try simpler things first, then more complex things
Train and Test

• Train your model
• Test on dev set (not test set)
• Does it converge? (how many epochs)
• Does it predict?
 • Just majority class? Good distribution?
• Once you have a good(ish) model, experiment
• Do comparisons that should be better/worse
 • Are they better/worse?
Error Analysis

• Error measure appropriateness
 • Accuracy vs F-score (class equality)
 • Precision vs recall
• Use confusion matrix
 • What is getting confused, what works well
• Where is good/bad, why?
 • Look at false positives/negatives
 • Look at correct ones, are they good/easy?
• What is missing
• What extra information would you use to get it right
Error Analysis (High Level)

• What is the cost of errors?
 • Precision vs recall
 • Over prediction vs under prediction
• Biases?
 • All data/models/training are biased
 • Can you fix reduce that bias
• Is prediction based on naive reasons?
 • People called “Donald” are president
 • People called “Elon” are billionaires
Other Techniques

• Get more training data
• Data augmentation
 • Adding systemically modified examples
 • Generating new “similar” examples (e.g. MT)
• What is the best you can ever get?
 • How close are you to that
Getting Run-time examples

- https://huggingface.co
 - Code and tutorials
 - Pytorch and Tensorflow
- Other on-line tutorials
 - Step by step examples, try them!
- General code examples may be good (or not)
 - Make their code work for you before changing it
I need more GPUs

• Google co-lab gives access
• You probably don’t need more GPUs
 • You need a better model/dataset
• In NLP (and elsewhere)
 • You are graded on the task success
 • You aren’t graded on your global warming contributions
• (But sometimes you do need more GPUs)
 • But you need to justify it
Now run your model on your test set
 • You thought I’d forgotten about that
Run at least three models on your test set
 • Do models perform on your test set as with your dev set?
Get a new test set from another source
 • Does your models still work?
And Finally

• Know your data
• Know your models
• If you are surprised by a result
 • Investigate it (there is a bug, or you are brilliant)
• Stupid train/test data mismatch → biggest errors
• Tiny changes in conditions shouldn’t break models