Natural Language Processing

Lecture 10: Classification 2
Features and Embeddings
What are the Features?
Sample Representation

• List of features → Category
• Category: “small” finite discrete # of classes
 ▼ E.g. LanguageID, POS tag, Movie genre
• Features: list of real numbers
 ▼ All samples must have same # of features
How to represent words

• Samples are movie reviews:
 ∼A few sentences of text
 ∼A class: 1-5 (1 very bad, 5 very good)
• Class: simple int
• Features: ???
 ∼Encode first n words (?)
How to represent words

• # of words
• # of sentences
• # of exclamations points!!!!
• Does “good” appear?
• Does “bad” appear?
Discrete Classes

• Categories to numbers
 ∼ Business [1,0,0]
 ∼ Sports [0,1,0]
 ∼ Entertainment [0,0,1]
 ∼ “one hot” representations

• Usually better than
 ∼ Business → 1
 ∼ Sports → 2
 ∼ Entertainment → 3
How to represent words

• Decide on vocabulary size + _other_
 ~Occurrence of word
 ~Array of vocab size: set to 1 if word appears
 • (or set to # of occurrences of word)
 ~Vocab should be most frequent/relevant words in corpus
 • Including very high frequency words?
 • Only content words?
 • Only words appearing more than once?
How to represent words

• One big vector for whole movie review
 ~Lots of zeros and few ones
 ~Might be 1000, 10,000 wide (or more)

• Often called “bag of words”
 ~Not care about word order
 ~Not care about # of occurrences of word
 ~Same length vector independent of length of review
Bag of Words

• Reviews are “similar” if vectors are similar
 ~ Similar means similar word distribution
 ~ e.g. simple difference, edit difference, cos similarity

• But
 ~ “I love the film” equally different from
 ~ “I hate the film” or
 ~ “I like the film”
Bag of Words

• Word similarity (“love” vs “hate” vs “like”)
 ~ Need not just be binary representation

• Contextual effects (“good” vs “not good”)
 ~ Need longer context
 ~ Can add bi-gram feature to vector
 ~ A vector with value for each bi-gram
Word Differences

• “like” and “love” more similar than
• “like” and “hate”
• Sparse vector treat distance the same
• Word Embeddings
 ~ Dense (not sparse) representations
 ~ Distance metrics more “meaningful”
 ~ Do dimensions in word embeddings
 ~ mean something? (maybe/maybe not)
Word Embeddings

• Use existing pretrained library
 - Word2vec, GloVe, elmo/bert

• Train your own
 - Word2vec, skip-gram

• Consider:
 - Is your data like others?
 - Do you have enough examples?
 - Are there special meanings in your domain
Word Embeddings

• How long should the dense vector be?
 ~300? 768? 1000? floats/doubles

• We don’t really know
 ~It’s not the size of the space represented
 ~It’s if the dimensions found are useful

• Hard to implicitly control meaning in vectors
 ~Easy to explicitly do it,
 • concat: word, pos, dependency parent
Word Embeddings

• New embedding techniques
 ~ Word2Vec and GloVe were standard
 ~ “Everything is better with Bert”
 ~ BERT [Devlin et al 2019]
 • Contextualized word embedding with transformers
 • Give SOTA performance in 11 standard NLP tasks

• But better ones being developed (e.g. XLNet)
Sentence/Document Embeddings

• But we need a fixed sized vector for the doc
 ↘ So add up all the vectors
 ↘ So find the average of all the vectors
 ↘ So find the max of each value in vectors
 ↘ Do something else

 • Learn a representation from sequence of word embeddings (e.g. sequence model)
 • Train something on all documents
Too many words

• Contextualized word embeddings
 ~/Care about some context
• Could concat previous and next word vectors
• But it gets very big very quickly
 ~/Even with case folding
• POS is more limited size
 ~/e.g 45ish tags, smaller representation
 ~/Smaller number of contexts
Too Many Features

• If you have too many features
 ∨ Each sample has some unique combination
 ∨ Training works well, but no generalization

• How much is too much/too little?
 ∨ Depends
 ∨ Pretraining is good (usually, if in similar domain)
 ∨ Ask yourself if the system has the features you think are important for task
Summary

- Features (must) be numeric
- Convert discrete features to one-hot
- Sparse vs Dense word representations
- Bag of Words (bi-grams/tri-grams)
- Word Embeddings (dense)
 - Pretrained vs trained
- Are your features enough/not enough
- Does it work? When does it fail? Why?