Natural Language Processing

Lecture 6: Information Theory; Spelling, Edit Distance, and Noisy Channels

Language Models

- Ngram models seem limited
 - Must be something better
- What about grammar/semantics?
 - But we care more about ranking good
 - Than ranking bad sentences
- Most LM are looking a "nearly" good examples

Neural Language Models

- Not just **previous** local context
 - What about future context
- Not just **local** context
 - What about words nearby
- Neural models aren't just about **N**-grams
 - They care about more context if its helpful
 - But you need lots of data to train from

Neural Language Models

- BERT (ELMO)
 - Contextualized word embedding
 - Also a language model
- GPT-2
 - A more general language model
- Both using transformer neural models
 - Trained on lots and lots of data
- Give best LMs
 - if their training model matches yours (ish)

A Taste of Information Theory

- Shannon Entropy, *H*(*p*)
- Cross-entropy, H(p; q)
- Perplexity

Codebook

Horse	Code	
Clinton	000	
Edwards	001	
Kucinich	010	
Obama	011	
Huckabee	100	
McCain	101	
Paul	110	
Romney	111	

Codebook

Horse	Code	Probability	
Clinton	000	1/4	
Edwards	001	1/16	
Kucinich	010	1/64	
Obama	011	1/2	
Huckabee	100	1/64	
McCain	101	1/8	
Paul	110	1/64	
Romney	111	1/64	

Codebook

Horse	Probability	New Code	
Clinton	1/4	10	
Edwards	1/16	1110	
Kucinich	1/64	111100	
Obama	1/2	0	
Huckabee	1/64	111101	
McCain	1/8	110	
Paul	1/64	111110	
Romney	1/64	111111	

Three Spelling Problems

- 1. Detecting isolated non-words "graffe" "exampel"
- 2. Fixing isolated non-words "graffe" _ "giraffe" "exampel" _ "example"
- 3. Fixing errors in context
- "I ate desert" 👝 "I ate dessert"
- "It was written be me" 👝 "It was written by me"

String edit distance

- How many letter changes to map A to B
- Substitutions
 - EXAMPEL
 - EXAMPLE 2 substitutions
- Insertions
 - EXA PLE
 - EXAMPLE 1 insertion
- Deletions
 - EXAMMPLE
 - EXA _ MPLE 1 deletion

Levenshtein Distance

String Edit Distance

function MIN-EDIT-DISTANCE(target, source) returns min-distance

```
n \leftarrow \text{LENGTH}(target)

m \leftarrow \text{LENGTH}(source)

Create a distance matrix distance[n+1,m+1]

distance[0,0] \leftarrow 0

for each column i from 0 to n do

for each row j from 0 to m do

distance[i, j] \leftarrow \text{MIN}(distance[i-1,j] + ins-cost(target_j),

distance[i-1,j-1] + subst-cost(source_j, target_i),

distance[i,j-1] + ins-cost(source_j))
```

Figure 5.5 The minimum edit distance algorithm, an example of the class of dynamic programming algorithms.

String edit distance

#	9	8	7	6	5	4	4	6	5	
L	8	7	6	5	4	3	3	5	7	
E	7	6	5	4	3	2	3	2	3	
Р	6	5	4	3	2	1	2	3	4	
Μ	5	4	3	2	1	2	3	4	5	
Μ	4	3	2	1	0	1	2	3	4	
Α	3	2	1	0	1	2	3	4	5	
X	2	1	0	1	2	3	4	5	6	
E	1	0	1	2	3	4	5	6	7	
#	0	1	2	3	4	5	6	7	8	
	#	E	Х	А	М	Р	L	E	#	

String edit distance

#	9	8	7	6	5	4	4	6	5	
L	8	7	6	5	4	3	3	5	7	
E	7	6	5	4	3	2	3	2	3	
Р	6	5	4	3	2	1	2	3	4	
М	5	4	3	2	1	2	3	4	5	
Μ	4	3	2	1	0	1	2	3	4	
Α	3	2	1	0	1	2	3	4	5	
X	2	1	0	1	2	3	4	5	6	
E	1	0	1	2	3	4	5	6	7	
#	0	1	2	3	4	5	6	7	8	
	#	E	X	A	М	Р	L	E	#	

Levenshtein Hamming Distance

$$D_{0,0} = 0$$

$$D_{i,j} = \min \begin{cases} D_{i-1,j} + \infty \\ D_{i,j-1} + \infty \\ D_{i-1,j-1} + \text{substcost}(t_i, s_j) \end{cases}$$

Levenshtein Distance with Transposition

$$D_{0,0} = 0$$

$$D_{i,j} = \min \begin{cases} D_{i-1,j} + \text{inscost}(t_i) \\ D_{i,j-1} + \text{delcost}(s_j) \\ D_{i-1,j-1} + \text{substcost}(t_i, s_j) \\ D_{i-2,j-2} + \text{transcost}(s_{j-1}, s_j) \text{if } s_{j-1} = t_i \text{ and } s_j = t_{i-1} \end{cases}$$

Three Spelling Problems

- ✓ Detecting isolated non-words
- ✓ Fixing isolated non-words
- 3. Fixing errors in context

Kernighan's Model: A Noisy Channel

acress

С	freq(<i>c</i>)	$p(t \mid c)$	%
actress	1343	p(delete t)	37
cress	0	p(delete a)	0
caress	4	p(transpose a & C)	0
access	2280	p(substitute r for C)	0
across	8436	p(substitute e for 0)	18
acres	2879	p(delete S)	21
•••			

How to choose between options

- Probabilities of edits
 - Insertions, deletions, substitutions,
 - Transpositions
- Probability of the new word

Noisy Channel Model (General)

Probability model

- Most likely word given observation – Argmax ($P(W \mid O)$)
- By Bayes Rule is equivalent to

– Argmax ($\frac{P(W)P(O|W)}{P(O)}$)

• Which is equivalent to

– Argmax (P(W) P(O|W)) (denom is constant)

- P(O | W) calculated from edit distance
- P(W) calculated from language model