Natural Language Processing

Lecture 19: Compositional Semantics and Semantic Parsing
Meaning

• The recent lectures dealt with some issues around word meaning, primarily:
 • Relationships between words and word similarity
 • Word sense disambiguation
 • Predicates and their arguments
• Today: meaning of NL (English) sentences
Key Challenge of Meaning

• We actually say very little - much more is left unsaid, because it’s assumed to be widely known.

• Examples:
 • Grading assignments
 • Restaurant menus
 • Learning to use a new piece of software
Meaning Representation Languages

• Symbolic representation that does two jobs:
 • Conveys the meaning of a **sentence**
 • Represents (some part of) the **world**

• Today we’ll use **first-order logic**.
A MRL Should Be Able To ...

- Verify a query against a knowledge base
 - Do CMU students follow politics?
- Eliminate ambiguity
 - CMU students enjoy visiting Senators.
- Cope with vagueness
 - Sally heard the news.
- Cope with many ways of expressing the same meaning (canonical forms)
 - The candidate evaded the question.
 - The question was evaded by the candidate.
- Draw conclusions based on the knowledge base
 - Who could become the 48th president?
- Represent all of the meanings we care about
Model-Theoretic Semantics

• Model: a simplified representation of the world: objects, properties, relations (domain).

• Non-logical vocabulary

 • Each element denotes a well-defined part of the model

 • Such a mapping is called an interpretation
A Model

• **Domain:** Noah, Karen, Rebecca, Frederick, Green Mango, Casbah, Udipi, Thai, Mediterranean, Indian

• **Properties:** Green Mango and Udipi are crowded; Casbah is expensive

• **Relations:** Karen likes Green Mango, Frederick likes Casbah, everyone likes Udipi, Green Mango serves Thai, Casbah serves Mediterranean, and Udipi serves Indian

• n, k, r, f, g, c, u, t, m, i

• Crowded = {g, u}

• Expensive = {c}

• Likes = {(k, g), (f, c), (n, u), (k, u), (r, u), (f, u)}

• Serves = {(g, t), (c, m), (u, i)}
Some English

- Karen likes Green Mango and Frederick likes Casbah.
- Noah and Rebecca like the same restaurants.
- Noah likes expensive restaurants.
- Not everybody likes Green Mango.

- What we want is to be able to represent these statements in a way that lets us compare them to our model.

- **Truth-conditional semantics**: need operators and their meanings, given a particular model.
First-Order Logic

• **Terms** refer to elements of the domain: **constants, functions, and variables**
 - Noah, SpouseOf(Karen), X

• **Predicates** are used to refer to sets and relations
 - Serves(Casbah, Mediterranean)

• Logical connectives: \(\land \) (and), \(\lor \) (or), \(\neg \) (not), \(\Rightarrow \) (implies), ...

• Quantifiers ...
Quantifiers in FOL

- Two ways to use variables:
 - refer to one anonymous object from the domain (existential; \exists; “there exists”)
 - refer to all objects in the domain (universal; \forall; “for all”)

- a restaurant near CMU that serves Indian food
 $\exists x \text{ Restaurant}(x), \text{Near}(x, \text{CMU}), \text{Serves}(x, \text{Indian})$

- All expensive restaurants are far from campus
 $\forall x \text{ Restaurant}(x), \text{Expensive}(x) \Rightarrow \neg \text{Near}(x, \text{CMU})$
Extension: Lambda Notation

• A way of making anonymous functions.
• $\lambda x. (\text{some expression mentioning } x)$
 • Example: $\lambda x.\text{Near}(x, \text{CMU})$
 • Deeper example: $\lambda x.\lambda y.\text{Serves}(y, x)$
• Lambda reduction: substitute for the variable.
 • $(\lambda x.\text{Near}(x, \text{CMU}))(\text{Lulu’s Noodles})$
 becomes
 $\text{Near}(\text{Lulu’s Noodles, CMU})$
Inference

• **Big idea:** extend the knowledge base, or check some proposition against the knowledge base.

• **Forward chaining** with modus ponens:
 • given α and $\alpha \Rightarrow \beta$, we know β.

• **Backward chaining** takes a query β and looks for propositions α and $\alpha \Rightarrow \beta$ that would prove β.
 • Not the same as backward reasoning (abduction).
 • Used by Prolog

• Both are sound, neither is complete.
Lots More To Say About MRLs!

- See chapter 17 for more about:
 - Representing events and states in FOL
 - Dealing with optional arguments (e.g., “eat”)
 - Representing time
 - Non-FOL approaches to meaning
First-Order Worlds, Then and Now

- Interest in this topic waned during the 1990s and 2000s.
- It’s come back, with the rise of semi-structured databases like Wikipedia.
 - Lay contributors to these databases may be helping us to solve the knowledge acquisition problem.
- Also, lots of research on using NLP, information extraction, and machine learning to grow and improve knowledge bases from free text data.
- “Read the Web” project here at CMU.
Connecting Syntax and Semantics
Semantic Analysis

• Goal: transform a NL statement into MRL (today, FOL).

• We’re assuming a very literal, inference-free version of meaning!

• Sometimes called “semantic parsing.”
Compositionality

• The meaning of an NL phrase is determined by combining the meaning of its sub-parts.
• There are obvious exceptions ("hot dog," "straw man," "New York," etc.).
• Big idea: start with parse tree, build semantics on top using FOL with λ-expressions.
An Example

• Noah likes expensive restaurants.

• \(\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{ Likes}(Noah, x) \)
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{ Likes}(\text{Noah}, x)$
• Noah likes expensive restaurants.

• ∀x Restaurant(x), Expensive(x) ⇒ Likes(Noah, x)
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{ Likes}(\text{Noah}, x)$
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{ Likes}(\text{Noah}, x)$
An Example

• Noah likes expensive restaurants.

• ∀x Restaurant(x), Expensive(x) ⇒ Likes(Noah, x)
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$
An Example

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$

$S \rightarrow \text{NP VP \{ VP.sem(NP.sem) \}}$

```
S
   VP
     $\lambda y. \forall x \text{ Expensive}(x) \land \text{Restaurant}(x) \Rightarrow \text{Likes}(y, x)$
   NP
     $\lambda x. \text{Expensive}(x) \land \text{Restaurant}(x)$
   NP
     $\lambda f. \lambda y. \forall x f(x) \Rightarrow \text{Likes}(y, x)$
   NNP VBZ JJ NNS
     Noah
```

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$
An Example

- Noah likes expensive restaurants.

\[\forall x \text{ Restaurant}(x), \text{Expensive}(x) \rightarrow \text{Likes}(\text{Noah}, x) \]

\[\lambda f. \lambda y. \forall x f(x) \rightarrow \text{Likes}(y, x) \]

\[\lambda y. \forall x \text{ Expensive}(x) \land \text{Restaurant}(x) \rightarrow \text{Likes}(y, x) \]

\[\lambda x. \text{ Expensive}(x) \land \text{Restaurant}(x) \]

\[\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \rightarrow \text{Likes}(\text{Noah}, x) \]
Alternative (Following SLP)

- Noah likes expensive restaurants.
- $\forall x \text{ Restaurant}(x), \text{ Expensive}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$

$S \rightarrow \text{NP VP} \{ \text{NP.sem(VP.sem)} \}$
Quantifier Scope Ambiguity

- Every man loves a woman.

- \(\forall u \text{ Man}(u) \Rightarrow \exists x \text{ Woman}(x) \land \text{ Loves}(u, x) \)
- \(\exists x \text{ Woman}(x) \land \forall u \text{ Man}(u) \Rightarrow \text{ Loves}(u, x) \)
This Isn’t Quite Right!

• “Every man loves a woman” really is ambiguous.
 • A seat was available for every customer
 • A toll free number was available for every customer
 • A secretary phoned up each director
 • A letter was sent to each customer
• This gives only one of the two meanings.
• One approach is to delay the quantifier processing until the end, then permit any ordering.
Matching Syntax and Semantics

• Combinatorial Categorial Grammar (CCG)

• Five grammar rules (only)
 • Forward application \(A/B + B = A\)
 • Backward application: \(B + A\backslash B = A\)
 • Composition: \(A/B + B/C = A/C\)
 • Conjunction: \(A \text{ CONJ } A' = A\)
 • Type Raising \(A = X/(X\backslash A)\)
John = np
Mary = np
likes = (s\np)/np

Forward application
X/Y Y => X

Backward application
Y X\Y => X

Thus
John likes Mary
np (s\np)/np) np
 -------- Forward
 s\np
 -------- Backward
 s
CCG Parsing

a, the np/n
old n/n
in (np\np)/np
man, ball, park n
kicked (s\np)/np

the old man kicked a ball in the park
np/n n/n n (s\np)/np np/n n (np\np)/np np/n n

n np

np

np\np

np

s\np

s
CCG Parsing and Semantics

A/B:S + B:T = A:S.T
B:T + A\B:S = A:S.T

John np:j
walks (s\np):lambda X walks(X)

John walks
np:j s\np:lambda X walks(X)

s : walks(j)

B:T + A\B:S = A:S . T
np:j + s\np:lambda X walks(X)
s : lambda X walks(X) . j
s : walks(j)
CCG Parsing and Semantics

John np:j
Mary np:m
likes (s
np)/np: lambda Y lambda X likes(X,Y)

John np:j (s
np)/np: lambda Y lambda X likes(X,Y) m

s
np: lambda X likes(X,m)

s likes(j,m)

lambda Y lambda X likes(X,Y) . m
lambda X likes(X,m)

lambda X likes(X,m) . j
likes(j,m)
Probabilistic CCGs

• Derive lexical entries from data
 • Find which entries allow parsing (constrained)
• From data with logical forms
 • Find out possible parses that derived those forms
• But needs sentence → logical form training data
• But can work on targeted domains
SEM AF OR

• Semantic parser (Das et al 2014)
• Uses FrameNET to identify frames
• Fills in roles for a sentence

But there still are n’t enough ringers to ring more than six of the eight bells.

<table>
<thead>
<tr>
<th>Frame</th>
<th>LU</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE MAKERS</td>
<td>bell.n</td>
</tr>
<tr>
<td>CAUSE TO MAKE NOISE</td>
<td>ring.v</td>
</tr>
<tr>
<td>SUFFICIENCY</td>
<td>enough.a</td>
</tr>
<tr>
<td>EXISTENCE</td>
<td>there be.v</td>
</tr>
</tbody>
</table>
Other Semantic Parsers

• Event and Entity extraction
• Semantic Role Labelling (sort of semantics)
• Intent and Slot classifiers
• More superficial – but
• Finds canonical meaning from sentences