Natural Language Processing

Lecture 7: Classification
Some Administrivia

• Read the book
 – (Really Read the Book!)

• Project Teams
 – Let us know if someone drops

• Read the book
 – (Really Read the Book!)
Acknowledging Collaboration

• *MUST* include explicit acknowledgements of people/software/websites in assignments/projects

• Included in written submissions
 – “No collaboration made” (if none)
Notation

• Training examples: \(\mathbf{x} = (x_1, x_2, \ldots, x_N) \)
• Their categories: \(\mathbf{y} = (y_1, y_2, \ldots, y_N) \)
• A classifier \(\mathbf{C} \) seeks to map \(x_i \) to \(y_i \)
 \[
 x \rightarrow \boxed{\mathbf{C}} \rightarrow y
 \]
• A learner \(\mathbf{L} \) infers \(\mathbf{C} \) from \((\mathbf{x}, \mathbf{y}) \)
 \[
 x \rightarrow \boxed{\mathbf{L}} \rightarrow \boxed{\mathbf{C}}
 \]
 \[
 y \rightarrow \boxed{\mathbf{L}} \rightarrow \boxed{\mathbf{C}}
 \]
Three different classifiers

- Noisy Channel
- Naïve Bayes
- Linear Models
- Perceptron
Probabilistic Classifiers

return \arg\max_y p(y' | x)

X \rightarrow C \rightarrow y
Noisy Channel Model (General)

$\text{source} \xrightarrow{\text{y}} \text{channel} \xrightarrow{\text{decode}} \text{X}$

$p(y)$

$p(x \mid y)$

What proportion of emails are expected to be spam vs. not spam?

What proportion of product reviews are expected to get 1, 2, 3, 4, 5 stars?
Noisy Channel Classifiers

\[
\text{return } \arg\max_y p(y) \times p(x \mid y)
\]
Representing Text: Features

• Any object $x \in \mathcal{X}$ you might be given to classify can be represented as a vector in a **vector space**
 – Vectors of representing text are often **sparse** and **high-dimensional**
 – Word embeddings (word2vec, ELMo, Bert)
• Designing Φ (“Feature engineering”)
 – What information do you need to solve the problem?
 – What information do you need to avoid mistakes?
 – Very common: bag-of-words
Example: Spam Detection

• A training set of email messages
 – Spam or Not-Spam

• A set of features for each message
 – ????
Example: Spam Detection

• A training set of email messages
 – Spam or Not-Spam

• A set of features for each message
 – Bag of words
 • For each word: Number of occurrences
 • Nigerian Prince, email quota full, won ONE HUNDRED MILLION DOLLARS
 – From someone you know
 – A reply
 – From @andrew.cmu.edu (your domain)
Example: Movie Ratings

• A training set of movie reviews
 – Stars 1-5

• A set of features for each message
 – Bag of words
 • For each word: Number of occurrences
 • The: 234; of: 26 ...; wars: 3; nebuchadnezzar: 0;
 • Excellent, sucks, blockbuster, biggest, Star Wars, Disney, Adam Sandler
 – ...

Feature Representation

• Discrete vs Continuous
 – Finite number of categories
 – Floating point scale

• Many classifiers require continuous features

• Convert discrete to continuous
 – “very bad”, “bad”, “okay”, “good”, “very good” →
 – 1-5 linear scale, if its a scale
 – Or [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0] ...
 – “one hot” vector if its not a scale
Naïve Bayes Classifier

\[\phi_j \leftarrow [\Phi(x)]_j \]

return \[\arg\max_{y'} p(y') \times \prod_j p(\phi_j \mid y') \]
Naïve Bayes Learner

∀y, \(p(y) \leftarrow \frac{\text{count}(y)}{N} \)

∀y, ∀j, ∀f, \(p(\phi_j(x) = f \mid y) \leftarrow \frac{\text{count}(f, y)}{\text{count}(y)} \)

\(L \)
Linear Classifiers

1. Use $\Phi(x)$ to map x onto a real-valued feature space.
2. Calculate the linear score $z = w^T \Phi(x)$.
3. If $z > 0$, then return $y = \text{YES}$, else $y = \text{NO}$.

$x \rightarrow C \rightarrow y$
Linear Classifiers
Linear Classifiers

Let \(u \): \(w^T u = 0 \)
Linear Classifiers

\[x \cdot w = 0 \]
Linear Classifiers

\[x'w = 0 \]
Linear Classifiers (> 2 Classes)

\[
\text{return } \arg\max_y w^T \Phi(x, y)
\]
Perceptron Learner

\[
\mathbf{w} \leftarrow \mathbf{0} \\
\text{for } t = 1 \ldots T: \\
\quad \text{select } (x_t, y_t) \\
\quad \quad \# \text{ run current classifier} \\
\quad y \leftarrow \arg\max_{y'} \mathbf{w}^\top \Phi(x, y') \\
\quad \text{if } y \neq y_t \quad \# \text{ mistake} \\
\quad \quad \mathbf{w} \leftarrow \mathbf{w} + \alpha [\Phi(x_t, y_t) - \Phi(x_t, y)] \\
\text{return } \mathbf{w}
\]
Perceptrons

• Single Layer Perceptron
 – Multilayer perceptrons used in neural networks
 – Deep Neural Nets are > 3ish layers.

• Weights are found iteratively
 – May converge (or not) depending on problem
 – May find local maximum
 – May take longer to train
Which Classifier to Use?

• The Best one for the Problem
• Machine Learning Specialist
 – Best algorithm to train from given features
• Language Technologist
 – Feature engineer the best features
• NLP Specialist
 – Care about *both*
 – What features should be there, and what algorithm will be able to exploit those features
• Engineer
 – Why didn’t it work (what info is missing)