Natural Language Processing

Lecture 16: Lexical Semantics
The Story Thus Far

• So far we have talked about...
 – Information extraction
 – Morphology
 – Language modelling
 – Classification
 – Syntax and syntactic parsing
The Path Forward

• Now we are going to talk about something that matters
The Path Forward

• Semantics (and pragmatics) are the glue that connect language to the real world
• In a sense, the other things we have talked about are only meaningful once semantics is taken into account at some level
• We will talk about...
 – Lexical semantics (the meanings of words)—this lecture
 – Word embeddings (a clever way of getting at lexical semantics)
 – Model-theoretic semantic representations for sentences
 – Semantic parsing and semantic role labelling
Three Ways of Looking at Word Meaning

• **Decompositional**
 – What the “components” of meaning “in” a word are

• **Ontological**
 – How the meaning of the word relates to the meanings of other words

• **Distributional**
 – What contexts the word is found in, relative to other words
Decompositional Semantics

<table>
<thead>
<tr>
<th></th>
<th>boy</th>
<th>girl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+human</td>
<td>+human</td>
</tr>
<tr>
<td></td>
<td>−female</td>
<td>+female</td>
</tr>
<tr>
<td></td>
<td>−adult</td>
<td>−adult</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>man</th>
<th>woman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+human</td>
<td>+human</td>
</tr>
<tr>
<td></td>
<td>−female</td>
<td>+female</td>
</tr>
<tr>
<td></td>
<td>+adult</td>
<td>+adult</td>
</tr>
</tbody>
</table>
Limitations of Decompositional Semantics

• Where do the features come from?
 – How do you divide semantic space into features like this?
 – How do you settle on a final list?

• How do you assign features to words in a principled fashion?

• How do you link these features to the real world?

• For these reasons, decompositional semantics is the least computationally useful approach to semantics
Ontological Approaches to Semantics
Semantic Relations

• In grammar school, or in preparation for standardized tests, you may have learned the following terms:

 synonymy, antonymy

• Synonymy and antonymy are relations between words. They are not alone:

 hyponymy, hypernymy, meronymy, holonymy
Semantic Relations

- **Synonymy**—equivalence
 - <small, little>
- **Antonymy**—opposition
 - <small, large>
- **Hyponymy**—subset; is-a relation
 - <dog, mammal>
- **Hypernymy**—superset
 - <mammal, dog>
- **Meronymy**—part-of relation
 - <liver, body>
- **Holonymy**—has-a relation
 - <body, liver>
Lexical Mini-Ontology

holonym (whole) building.n.1 enclosure.n.1 hypernym
meronomy (has-a) wall.n.1 fence.n.1 hypernym (is-a)
meronym (part) door.n.1 hyponym
antonym build.v.1 destroy.v.1
antonym antonymy antonym
synonym synonymy synonym

wall.v.1 surround.v.2
WordNet

- WordNet is a lexical resource that organizes words according to their semantic relations.
WordNet

- Words have different senses
- Each of those senses is associated with a synset (a set of words that are roughly synonymous for a particular sense)
- These synsets are associated with one another through relations like antonymy, hyponymy, and meronymy
WordNet is a glorified electronic thesaurus
Synsets for *dog* (*n*)

- S: (n) *dog*, *domestic dog*, *Canis familiaris* (a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds) "the dog barked all night"
- S: (n) *frump*, *dog* (a dull unattractive unpleasant girl or woman) "she got a reputation as a frump"; "she's a real dog"
- S: (n) *dog* (informal term for a man) "you lucky dog"
- S: (n) *cad*, *bounder*, *blackguard*, *dog*, *hound*, *heel* (someone who is morally reprehensible) "you dirty dog"
- S: (n) *frank*, *frankfurter*, *hotdog*, *hot dog*, *dog*, *wiener*, *wienerwurst*, *weenie* (a smooth-textured sausage of minced beef or pork usually smoked; often served on a bread roll)
- S: (n) *pawl*, *detent*, *click*, *dog* (a hinged catch that fits into a notch of a ratchet to move a wheel forward or prevent it from moving backward)
- S: (n) *andiron*, *firedog*, *dog*, *dog-iron* (metal supports for logs in a fireplace) "the andirons were too hot to touch"
What’s a *Fish*?
(According to WordNet)

- **fish** (any of various mostly cold-blooded aquatic vertebrates usually having scales and breathing through gills)
- **aquatic vertebrate** (animal living wholly or chiefly in or on water)
- **vertebrate, craniate** (animals having a bony or cartilaginous skeleton with a segmented spinal column and a large brain enclosed in a skull or cranium)
- **chordate** (any animal of the phylum Chordata having a notochord or spinal column)
- **animal, animate being, beast, brute, creature, fauna** (a living organism characterized by voluntary movement)
- **organism, being** (a living thing that has (or can develop) the ability to act or function independently)
- **living thing, animate thing** (a living (or once living) entity)
- **whole, unit** (an assemblage of parts that is regarded as a single entity)
- **object, physical object** (a tangible and visible entity; an entity that can cast a shadow)
- **entity** (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))
Thesaurus-based Word Similarity

Class Mammalia

Order Artiodactyla
- Genus Giraffidae: giraffe
- Genus Bovidae: gazelle

Order Carnivora
- Genus Caniformia: ...
- Genus Felidae: lion
Information Content

IC(c) = -log(# words in corpus) / # words that are equivalent to or are hyponyms of c

- Entity 0.93
 - Inanimate-object 1.79
 - Natural-object 4.12
 - Geological formation 6.34
 - Natural-elevation 9.09
 - Hill 10.88
 - Shore 9.09
 - Coast 10.74

(Adapted from Lin. 1998. An information Theoretic Definition of Similarity. ICML.)
WordNet Interfaces

- Various interfaces to WordNet are available
 - Many languages listed at
 https://wordnet.princeton.edu/related-projects
 - NLTK (Python)
    ```python
    >>> from nltk.corpus import wordnet as wn
    >>> wn.synsets('dog')
    (returns list of Synset objects)
    http://www.nltk.org/howto/wordnet.html
    ```
Limitations of WordNet and Ontological Semantics

• WordNet is a useful resource that many of you will use in your projects

• There are intrinsic limits to this type of resource, however:
 – It requires many years of manual effort by skilled lexicographers
 – In the case of WordNet, some of the lexicographers were not that skilled, and this has led to inconsistencies
 – The ontology is only as good as the ontologist(s); it is not driven by data

• We will now look at an approach to lexical semantics that is data driven and does not rely on lexicographers
Beef

Sentences from the brown corpus. Extracted from the concordancer in The Compleat Lexical Tutor, http://www.lextutor.ca/
Chicken

...the irradiated and refrigerated chicken. Acceptance of radiopasteurization toehouse". Glendora dropped a chicken and a flurry of feathers, and went will specialize in steaks, chops, chicken and prime beef as well as Tom's fa yard as the one concerned with the chicken and the egg. Which came first? Is the millions of buffalo and prairie chicken "! "Come on, there's some cold chicken and we'll see what else". They wen ves to extend the storage life of chicken at a low cost of about 0.5 cent per CHICKEN CADILLAC# Use one 6-ounce chicken breast for each guest. Salt and pe ion juice, to about half cover the chicken breasts. Bake slowly at least one-d, in butter. Sprinkle over top of chicken breasts. Serve each breast on a th around, they had a hard time". #CHICKEN CADILLAC# Use one 6-ounce chicken successful, and the shelf life of chicken can be extended to a month or more ay from making a cake, building a chicken coop, or producing a book, to found , they decided, but a deck full of chicken coops and piggens was hardly suit im. "Johnny insisted on cooking a chicken dinner in my honor- he's always bee nutes. Kid Ory, the trombonist chicken farmer, is also one of the solid a y Johnson reaching around the wire chicken fencing, which half covered the tr yes glittering behind dull silver chicken fencing. "That was Tee-wah I was t wine in the pot roast or that the chicken had been marinated in brandy, and yed this same game and called it "Chicken". He could not go through the f f the Mexicans hiding in a little chicken house had passed through his head, I'll never forget him cleaning the chicken in the tub". A story, no doubt . Organ meats such as beef and chicken liver, tongue and heart are planne p. "Miss Sarah, I can't cut up no chicken. Miss Maude say she won't". Aga pot. "What is it"? he asked. "Chicken", Mose said, and theatrically lick im"? Adam shook his head. "Chicken", Mose said. She was a child too m
Context Vectors

<table>
<thead>
<tr>
<th></th>
<th>arts</th>
<th>boil</th>
<th>data</th>
<th>function</th>
<th>large</th>
<th>sugar</th>
<th>summarized</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>pineapple</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>digital</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>information</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 20.9 Co-occurrence vectors for four words, computed from the Brown corpus, showing only 8 of the (binary) dimensions (hand-picked for pedagogical purposes to show discrimination). Note that *large* occurs in all the contexts and *arts* occurs in none; a real vector would be extremely sparse.
Hypothetical Counts based on Syntactic Dependencies

<table>
<thead>
<tr>
<th></th>
<th>Modified-by-ferocious(adj)</th>
<th>Subject-of-devour(v)</th>
<th>Object-of-pet(v)</th>
<th>Modified-by-African(adj)</th>
<th>Modified-by-big(adj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lion</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Dog</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cat</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Elephant</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Problem

• Some words are going to occur together many times just because they are very frequent
• The English words *the* and *is* are likely to occur in the same window many times
• They may not have a lot to do with one another except for the fact that they are frequent
• How should we address this?
Pointwise Mutual Information

\[\text{PMI}(w, f) = \log_2 \frac{p(w, f)}{p(w) \times p(f)} = \log_2 \frac{N \times \text{count}(w, f)}{\text{count}(w) \times \text{count}(f)} \]
Distributionally Similar Words

<table>
<thead>
<tr>
<th>Rum</th>
<th>Write</th>
<th>Ancient</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>vodka</td>
<td>read</td>
<td>old</td>
<td>physics</td>
</tr>
<tr>
<td>cognac</td>
<td>speak</td>
<td>modern</td>
<td>biology</td>
</tr>
<tr>
<td>brandy</td>
<td>present</td>
<td>traditional</td>
<td>geology</td>
</tr>
<tr>
<td>whisky</td>
<td>receive</td>
<td>medieval</td>
<td>sociology</td>
</tr>
<tr>
<td>liquor</td>
<td>call</td>
<td>historic</td>
<td>psychology</td>
</tr>
<tr>
<td>detergent</td>
<td>release</td>
<td>famous</td>
<td>anthropology</td>
</tr>
<tr>
<td>cola</td>
<td>sign</td>
<td>original</td>
<td>astronomy</td>
</tr>
<tr>
<td>gin</td>
<td>offer</td>
<td>entire</td>
<td>arithmetic</td>
</tr>
<tr>
<td>lemonade</td>
<td>know</td>
<td>main</td>
<td>geography</td>
</tr>
<tr>
<td>cocoa</td>
<td>accept</td>
<td>indian</td>
<td>theology</td>
</tr>
<tr>
<td>chocolate</td>
<td>decide</td>
<td>various</td>
<td>hebrew</td>
</tr>
<tr>
<td>scotch</td>
<td>issue</td>
<td>single</td>
<td>economics</td>
</tr>
<tr>
<td>noodle</td>
<td>prepare</td>
<td>african</td>
<td>chemistry</td>
</tr>
<tr>
<td>tequila</td>
<td>consider</td>
<td>japanese</td>
<td>scripture</td>
</tr>
<tr>
<td>juice</td>
<td>publish</td>
<td>giant</td>
<td>biotechnology</td>
</tr>
</tbody>
</table>

(from an implementation of the method described in Lin. 1998. Automatic Retrieval and Clustering of Similar Words. COLING-ACL. Trained on newswire text.)
Questions?