Natural Language Processing

Lecture 9: Classification 2
Features and Embeddings
What are the Features?
Sample Representation

• List of features → Category
• Category: “small” finite discrete # of classes
 – E.g. LanguageID, POS tag, Movie genre
• Features: list of real numbers
 – All samples must have same # of features
How to represent words

• Samples are movie reviews:
 – A few sentences of text
 – A class: 1-5 (1 very bad, 5 very good)
• Class: simple int
• Features: ???
 – Encode first n words (?)
How to represent words

• # of words
• # of sentences
• # of exclamations points!!!!
• Does “good” appear?
• Does “bad” appear?
Discrete Classes

• Categories to numbers
 - Business [1,0,0]
 - Sports [0,1,0]
 - Entertainment [0,0,1]
 - “one hot” representations

• Usually better than
 - Business → 1
 - Sports → 2
 - Entertainment → 3
How to represent words

• Decide on vocabulary size + _other_
 – Occurrence of word
 – Array of vocab size: set to 1 if word appears
 • (or set to # of occurrences of word)
 – Vocab should be most frequent/relevant words in corpus
 • Including very high frequency words?
 • Only content words?
 • Only words appearing more than once?
How to represent words

• One big vector for whole movie review
 – Lots of zeros and few ones
 – Might be 1000, 10,000 wide (or more)

• Often called “bag of words”
 – Not care about word order
 – Not care about # of occurrences of word
 – Same length vector independent of length of review
Bag of Words

• Reviews are “similar” if vectors are similar
 - Similar means similar word distribution
 - e.g. simple difference, edit different, cos similarity

• But
 - “I love the film” equally different from
 - “I hate the film” or
 - “I like the film”
Bag of Words

• Reviews are “similar” if vectors are similar
 – Similar means similar word distribution
 – e.g. simple difference, cosine similarity
• But
 – “The film is good” equally different from
 – “The film is not good” or
 – “The film is very very good”
Bag of Words

• Word similarity ("love" vs "hate" vs "like")
 − Need not just be binary representation

• Contextual effects ("good" vs "not good")
 − Need longer context
 − Can add bi-gram feature to vector
 − A vector with value for each bi-gram
Word Differences

• “like” and “love” more similar than
• “like” and “hate”
• Sparse vector treat distance the same
• Word Embeddings
 − Dense (not sparse) representations
 − Distance metrics more “meaningful”
 − Do dimensions in word embeddings
 − mean something ? (maybe/maybe not)
Word Embeddings

• Use existing pretrained library
 – Word2vec, GloVe, elmo/bert
• Train your own
 – Word2vec, skip-gram
• Consider:
 – Is your data like others?
 – Do you have enough examples?
 – Are there special meanings in your domain
Word Embeddings

• How long should the dense vector be?
 – 300? 768? 1000? floats

• We don’t really know
 – It’s not the size of the space represented
 – It’s if the dimensions found are useful

• Hard to implicitly control meaning in vectors
 – Easy to explicitly do it,
 • concat: word, pos, dependency parent
Word Embeddings

• New embedding techniques
 – Word2Vec and GloVe were standard
 – “Everything is better with Bert”
 – BERT [Devlin et al 2019]
 • Contextualized word embedding with transformers
 • Give SOTA performance in 11 standard NLP tasks
• But better ones being developed (e.g. XLNet)
Sentence/Document Embeddings

• But we need a fixed sized vector for the doc
 – So add up all the vectors
 – So find the average of all the vectors
 – So find the max of each value in vectors
 – Do something else
 • Learn a representation from sequence of word embeddings (e.g. seq2seq)
 • Train something on all documents
Too many words

- Contextualized word embeddings
 - Care about some context
- Could concat previous and next word vectors
- But it gets very big very quickly
 - Even with case folding
- POS is more limited size
 - e.g 45ish tags, smaller representation
 - Smaller number of contexts
Too Many Features

• If you have too many features
 – Each sample has some unique combination
 – Training works well, but no generalization

• How much is too much/ too little?
 – Depends
 – Pretraining is good (usually, if in similar domain
 – Ask yourself if the system has the features you think are important for task
Summary

• Features (must) be numeric
• Convert discrete features to one-hot
• Sparse vs Dense word representations
• Bag of Words (bi-grams/tri-grams)
• Word Embeddings (dense)
 − Pretrained vs trained
• Are you features enough/not enough
• Does it work? When does it fail? Why?