Assignment 1: Multilingual POS tagging

Recitation: Sept 14, 2020

Sachin Kumar
Parts of Speech

- Lexical Categories or Word Classes or Tags

- He: PRON
- saw: VERB
- two: NUM
- birds: NOUN
Open vs Closed Class Words

- **Closed**
 - Determiners: a an the that
 - Prepositions: at from
 - Pronouns

- **Open**
 - Nouns, Verbs, (Adjectives, Adverbs)
POS tagging

- A word can have multiple potential POS tags
 - The back door
 - On my back
 - Win the voters back
 - Promised to back the bill

- Open class and unseen word, eg TikTok
 - Noun, Verbs, (or even adjective, adverb)

- Have to determine the POS tag of a particular instance of the word
- Formulate as a learning problem
 - Needs supervision: training data with text and marked POS tags
Sources of Information to determine POS tag

- Neighboring POS tags
 - Bill saw that man yesterday

- Knowledge of word probabilities
 - Man is rarely used as a verb

Latter proves the most useful but former also helps
Simple Example: Feature based tagger

- Can do surprisingly well by looking at the word itself

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>the: the → DT</td>
</tr>
<tr>
<td>Lowercased word</td>
<td>Importantly: importantly → RB</td>
</tr>
<tr>
<td>Prefixes</td>
<td>unfathomable: un- → JJ</td>
</tr>
<tr>
<td>Suffixes</td>
<td>Importantly: -ly → RB</td>
</tr>
<tr>
<td>Capitalization</td>
<td>Meridian: CAP → NNP</td>
</tr>
<tr>
<td>Word shapes</td>
<td>35-year: d-x → JJ</td>
</tr>
</tbody>
</table>

- Learn a maxent model $p(t|w)$
Baseline Model

- Use a Bidirectional LSTM to generate features of every token
 - Features are contextual on surrounding text (but not the tags)
Multilingual POS tagging

- POS tagging on multiple languages
- Different languages usually define different sets of POS tags
 - Universal dependencies: Unify the POS tags across languages
- Amount of labeled data varies across languages
 - Low resource languages might benefit from high resource ones.
Requirements

- Machine with a GPU
 - AWS
 - Or, your own computer

- Software/packages/libraries:
 - Conda (recommended)
 - Python >=3.6
 - Pytorch>=1.0
 - Torchtext 0.7
Code Organization

- assign1/
 - config.json
 - model.py
 - main.py
 - saved_models/
 - en-model.pt
 - data/
 - en
 - es
 - af
 - cs
 - ar
 - lt
 - hy
 - ta/
 - train dev test
Model definition: model.py

```python
import torch
import torch.nn as nn

class BiLSTMPOSTagger(nn.Module):
    def __init__(...)
        ...

    def forward(self, text):
        ... = self.dropout(self.embedding(text))
        outputs, (hidden, cell) = self.lstm(embedded)
        predictions = self.fc(self.dropout(outputs))
        return predictions
```
Loading the data: main.py

```
TEXT = data.Field(lower=True)
UD_TAGS = data.Field()

fields = ("text", TEXT), ("udtags", UD_TAGS))

# load the data from the specific path
train_data, valid_data, test_data = datasets.UDPOS.splits(
    fields=fields,
    path=os.path.join("data", args.lang),
    train="{}-ud-train.conll".format(args.lang),
    validation="{}-ud-dev.conll".format(args.lang),
    test="{}-ud-test.conll".format(args.lang),
) # modify this to include our own dataset

# building the vocabulary for both text and the labels
MIN_FREQ = 2

TEXT.build_vocab(train_data, min_freq=MIN_FREQ)
UD_TAGS.build_vocab(train_data)
```
Creating the model, loss and optimizer

```python
criterion = nn.CrossEntropyLoss(ignore_index=TAG_PAD_IDX)
```
```python
model = BiLSTMPOSTagger(
    input_dim=len(TEXT.vocab),  
    embedding_dim=params["embedding_dim"],
    hidden_dim=params["hidden_dim"],
    output_dim=len(UD_TAGS.vocab),
    n_layers=params["n_layers"],
    bidirectional=params["bidirectional"],
    dropout=params["dropout"],
    pad_idx=PAD_IDX,
)
```
```python
optimizer = optim.Adam(model.parameters())
```
Train and evaluate the model

```python
model.train()

for batch in iterator:
    text = batch.text
    tags = batch.udtags

    optimizer.zero_grad()
    predictions = model(text)

    loss = criterion(predictions, tags)
    loss.backward()
    optimizer.step()
```
Grading

- Train and reproduce the results on the given datasets
 - B+
- Report with analysis: A-
 - Performance across language family, typology, datasize...
 - Hyperparameter tuning: config.json
 - Performance across tag types
- Non-trivial extension which leads to improvement in scores: A, A+
Extension: Initialize with pretrained embeddings

- Load the vectors from file: main.py

```python
TEXT.build_vocab(train_data,
    min_freq = MIN_FREQ,
    vectors = "glove.68.300d",
    unk_init = torch.Tensor.normal_)
```

- Initialize embedding table with the pretrained vectors: main.py

```python
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)
```

- Can either fix or train the embeddings
Extension: Initialize with a language model

1. Train the LSTMs with a language model objective (like ELMo [1]) using the same data.
 a. Initialize the embedding AND the LSTMs with this pretrained LM parameters. Randomly initialize the final layer and fine-tune with POS tagging loss.

2. Other: Initialize with BERT-like models [2]
 a. Might have to figure out tokenization.

Extensions: Character Embedding

- Modify Field "TEXT" to preprocess characters as well as words
 - data.Field → `data.NestedField`

- Modify embedding in model.py to accept characters.

```python
self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx)
```

```python
self.conv1 = nn.Sequential(
    nn.Conv2d(num_features, 256, kernel_size=7, stride=1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=3)
)
```
Extension: Structure of labels (CRFs)

- Till now, we only used the given text to predict the labels.
- Here: use the other labels to influence the current labels: BiLSTM-CRFs

Training: forward-backward algorithm. Decoding: Viterbi algorithm

Other Extensions

- Other Losses: https://arxiv.org/abs/1604.05529
- Adversarial Training: https://www.aclweb.org/anthology/N18-1089/