Reference Resolution
and other Discourse phenomena

11-711 Algorithms for NLP
November 2020
What Is Discourse?

Discourse is the coherent structure of language above the level of sentences or clauses. A discourse is a coherent structured group of sentences.

What makes a passage coherent?

A practical answer: It has meaningful connections between its utterances.
Cover of Shel Silverstein’s *Where the Sidewalk Ends* (1974)
Applications of Computational Discourse

• Analyzing sentences in context
• Automatic essay grading
• Automatic summarization
• Meeting understanding
• Dialogue systems
Kinds of discourse analysis

• Discourse: monologue, dialogue, multi-party conversation

• (Text) Discourse vs. (Spoken) Dialogue Systems
Discourse mechanisms vs. Coherence of thought

• “Longer-range” analysis (discourse) vs. “deeper” analysis (real semantics):
 – John bought a car from Bill
 – Bill sold a car to John
 – They were both happy with the transaction
Reference resolution
Reference Resolution: example

• [[Apple Inc] Chief Executive Tim Cook] has jetted into [China] for talks with govt. officials as [he] seeks to clear up a pile of problems in [[the firm]’s biggest growth market] ... [Cook] is on [his] first trip to [the country] since taking over...

• Mentions of the same referent (entity)
• Coreference chains (clusters):
 – {Apple Inc, the firm}
 – {Apple Inc Chief Executive Tim Cook, he, Cook, his}
 – {China, the firm’s biggest growth market, the country}
 – And a bunch of singletons (dotted underlines)
Coreference Resolution

Mary picked up the ball. She threw it to me.
Mary picked up the ball. She threw it to me.
3 Types of Referring Expressions

1. Pronouns
2. Names
3. Nominals
1st type: Pronouns

- Closed-class words like *she, them, it*, etc. Usually **anaphora** (referring back to **antecedent**), but also **cataphora** (referring forwards):
 - Although **he** hesitated, **Doug** eventually agreed.
 - strong constraints on their use
 - can be bound: *Every student improved his grades*
- Pittsburghese: *yinz=yuns=youse=y’all*
- US vs UK: *Pittsburgh is/are undefeated this year.*

- SMASH(?) approach:
 - **Search** for antecedents
 - **Match** against hard constraints
 - **And Select** using **Heuristics** (soft constraints)
Search for Antecedents

• Identify all preceding NPs
 – Parse to find NPs
 • Largest unit with particular head word
 – Might use heuristics to prune
 – What about verb referents? Cataphora?
Match against hard constraints (1)

- Must agree on number, person, gender, animacy (in English)

- **Tim Cook** has jetted in for *talks* with *officials* as *[he]* seeks to...
 - *he*: singular, masculine, animate, 3rd person
 - *officials*: plural, animate, 3rd person
 - *talks*: plural, inanimate, 3rd person
 - *Tim Cook*: singular, masculine, animate, 3rd person
Match against hard constraints (2)

• Within 1 S, Chomsky government and binding theory:
 – c-command: 1st branching node above \(x\) dominates \(y\)

• Abigail speaks with her. \(\text{[her} \neq \text{Abigail]}\)
• Abigail speaks with herself. \(\text{[her} =\text{ Abigail]}\)
• Abigail’s mom speaks with her. \(\text{[could corefer]}\)
• Abigail’s mom speaks with herself. \(\text{[herself} =\text{ mom]}\)
• Abigail hopes she speaks with her. \(\text{[she} \neq \text{ her]}\)
• Abigail hopes she speaks with herself. \(\text{[she} =\text{ herself]}\)
Select using Heuristics

• Recency: preference for most recent referent
• Grammatical Role: subj>obj>others
 – Billy went to the bar with Jim. He ordered rum.
• Repeated mention: Billy had been drinking for days. He went to the bar again today. Jim went with him. He ordered rum.
• Parallelism: John went with Jim to one bar. Bill went with him to another.
• Verb semantics: John phoned/criticized Bill. He lost the laptop.
• Selectional restrictions: John parked his car in the garage after driving it around for hours.
Hobbs Algorithm

• Algorithm for walking through parses of current and preceding sentences
• Simple, often used as baseline
 – Requires parser, morph gender and number
 • plus head rules and WordNet for NP gender
• Implements binding theory, recency, and grammatical role preferences

• More complex: Grosz et al: centering theory
Semantics matters a lot

From Winograd 1972:

- [The city council] denied [the protesters] a permit because [they] (advocated/feared) violence.
Non-referential pronouns

• Other kinds of referents:
 – According to Doug, Sue just bought the Ford Falcon
 • But that turned out to be a lie
 • But that was false
 • That struck me as a funny way to describe the situation
 • That caused a financial problem for Sue

• Generics: At CMU you have to work hard.

• Pleonastics/clefts/extraposition:
 – It is raining. It was me who called. It was good that you called.
 – Analyze distribution statistics to recognize these.
2nd type: Proper Nouns

- When used as a referring expression, just match another proper noun
 - match syntactic head words
 - in a sequence (in English), the last token in name
 - not in many Asian names: Xi Jinping is Xi
 - not in organizations: Georgia Tech vs. Virginia Tech
 - not nested names: the CEO of Microsoft

- Use gazetteers (lists of names):
 - Natl. Basketball Assoc./NBA
 - Central Michigan Univ./CMU(!)
 - the Israelis/Israel
3rd type: Nominals

- Everything else, basically
 - {Apple Inc, the firm}
 - {China, the firm’s biggest growth market, the country}
- Requires world knowledge, colloquial expressions
 - Clinton campaign officials, the Clinton camp
- Difficult
Learning reference resolution
Ground truth: *Mention* sets

- Train on sets of *markables*:
 - \{Apple Inc\}_{1:2}, the firm_{27:28}\}
 - \{Apple Inc Chief Executive Tim Cook\}_{1:6}, he_{17}, Cook_{33}, his_{36}\}
 - \{China_{10}, the firm’s biggest growth market_{27:32}, the country_{40:41}\}
 - no sets for singletons

- Structure prediction problem:
 - *identify* the spans that are mentions
 - *cluster* the mentions
Mention identification

• Heuristics over phrase structure parses
 – Remove:
 • Nested NPs with same head: [Apple CEO [Cook]]
 • Numerical entities: 100 miles
 • Non-referential *it*, etc.
 – Favoring recall

• Or, just all spans up to length N
Mention clustering

• Two main kinds:
 – Mention-pair models
 • Score each pair of mentions, then cluster
 • Can produce incoherent clusters:
 – Hillary Clinton, Clinton, President Clinton
 – Entity-based models
 • Inference difficult, due to exponential possible clusters
Mention-pair models (1)

• Binary labels: If i and j corefer, $i < j$, then $y_{i,j} = 1$

• [[Apple Inc] Chief Executive Tim Cook] has jetted into [China] for talks with govt. officials as [he] ...

• For mention he (mention 6):
 – Preceding mentions: Apple Inc, Apple Inc Chief Executive Tim Cook, China, talks, govt. officials
 – $y_{2,6} = 1$, other y’s are all 0

• Assuming mention 20 also corefers with he:
 – For mention 20: $y_{2,20} = 1$ and $y_{6,20} = 1$, other y’s are all 0

• For talks (mention 3), all $y = 0
Mention-pair models (2)

• Can use off-the-shelf binary classifier
 – applied to each mention j separately. For each, go from mention $j-1$ down to first i that corefers with high confidence
 – then use transitivity to get any earlier coreferences

• Ground truth needs to be converted from chains to ground truth mention-pairs. Typically, only include one positive in each set

• \([[\text{Apple Inc}] \text{ Chief Executive Tim Cook}] \) has jetted into \([\text{China}] \) for talks with govt. officials as [he] ...

• $y_{2,6} = 1$ and $y_{3,6} = y_{4,6} = y_{5,6} = 0$
 $y_{1,6}$ not included in training data
Mention-ranking models (1)

• For each referring expression i, identify a single antecedent $a_i \in \{\varepsilon, 1, 2, \ldots, i-1\}$ by maximizing the score of (a, i)
 – Non-referential i gets $a_i = \varepsilon$
 • Might do those in pre-processing

• Train discriminative classifier using e.g. hinge loss or negative log likelihood.
Mention-ranking models (2)

• Again, ground truth needs to be converted from clusters to ground truth mention-pairs
 – Could use same heuristic (closest antecedent)
 • But closest might not be the most informative antecedent
 – Could treat identity of antecedent as a latent variable
 – Or, score can sum over all conditional probabilities that are compatible with the true cluster
Transitive closure issue

• *Hillary Clinton, Clinton, President Clinton*

• *Post hoc* revisions?
 – but many possible choices; heuristics

• Treat it as constrained optimization?
 – equivalent to graph partitioning
 – NP-hard
Entity-based models

• It is fundamentally a clustering problem
• So entity-based models identify clusters directly
• Maximize over entities: maximize z, where
 – z_i indicates the entity referenced by mention i, and
 – scoring function is applied to set of all i assigned to entity e
• Possible number of clusterings is Bell number, which is exponential
• So incremental search, based on local decisions
Incremental cluster ranking

• Like SMASH, but cluster picks up features of its members (gender, number, animacy)
 • Prevents incoherent clusters
 – But may make greedy search errors
 – So, use beam search
 – Or, make multiple passes through document, applying rules (sieves) with increasing recall
 • find high-confidence links first: *Hillary Clinton, Clinton, she*
 • rule-based system won 2011 CoNLL task (but not later)
Incremental perceptron

• Beam search, where states are clusterings
• When nothing in beam is compatible with gold reference, make a perceptron update:
 \[c^* = \{Abigail, her\}, \{she\} \]
 \[\hat{c} = \{Abigail, she\} \] triggers update
• Or train with margin loss, or neural network
Reinforcement learning

• Think of clustering as a sequence of M *actions* to cluster M mentions
 – each action either: merges *i* into a cluster or starts a new cluster
• Stochastic policy is learned to make decisions
• Can be trained directly on evaluation metric
 – doesn’t need to be differentiable or decomposable
• Sample from exponential possible trajectories
• Updates made once action sequence is complete
Learning to search

• Policy gradient can have large variance
• Add an *oracle* policy:
 – use it to generate initial path: *roll-in*
 – use it to compute minimum possible loss going forward to goal: *roll-out*
 – or, sample it during both
• Oracle may be noisy
Representations

• Hand-engineered features
• Lexical features
• Distributed representations
Mention Features

- Type: pronoun, name, other.
- Width: in tokens.
- Lexical features: first, last, head word
- Morphosyntactic features: POS, number, gender, dependency ancestors
- Genre type

- Conjoined features
Mention-pair Features

• Distance: in tokens, mentions, sentences; surface or tree traversal
• String match: exact, suffix, head, or complex
• Compatibility: gender, number, animacy
• Nesting (nested NPs cannot corefer)
• Speaker identity
• Gazetteers
• Lexical semantics: WordNet, Knowledge Graphs
• Dependency paths: binding constraints
Semantics

• *China, country, growth market*
• Need meaning? WordNet can provide *China* and *country*
• Also similarity derived from WordNet? (*Use caution here.*)

• Less important for recent systems
Entity features

• Aggregate mention-pair features. Kinds of aggregation:
 – All-True
 – Most-True
 – Most-False
 – None

 – Scalar: min, max, median
 – Number of mentions included, by type, etc.
Distributed representations (1)

• Embed mentions and entities
• Example for embedding mentions:
 – run bidirectional LSTM over whole text
 – concatenate embeddings of first, last, and head words, plus a vector of surface features
 • or use attention to find head word
 – score candidate pair: $\psi_S(a) + \psi_S(i) + \psi_M(a,i)$
 • $\psi_S(a) = \text{FeedFwd}_S(u^{(a)})$ (how likely to be a coreference)
 • $\psi_M(a,i) = \text{FeedFwd}_M([u^{(a)}; u^{(i)}; u^{(a)}\odot u^{(i)}; f(a,i,w)])$
• blaze/fire, good. pilot/flight attendant, bad.
• Or, embed mention pairs?
Distributed representations (2)

• Embedding entities:
 – Entity represented by its mentions
 – Mention embedding u_i, entity embedding v_e
 – Decision to merge i into e:
 • $\psi_E(i, e) = \text{FeedFwd}([v_e ; u_i])$
 • if yes, $v_e \leftarrow f(v_e, u_i)$
 or $v_e \leftarrow \text{Pool}(v_e, u_i)$
Evaluating coreference
Evaluating coreference

• “Aggravatingly complex”
• Simple metrics too easy to “game”
• CoNLL 2011 practice: average of three:
 – MUC (Message Understanding Conference)
 – B-CUBED
 – CEAF

• CONE (B.Lin, R.Shah, Frederking, Gershman, 2010)
 – for Named Entities, using estimated gold standard
Many other aspects of discourse

• Given/new information
• Coherence/cohesion
• Discourse structure models
• Pragmatics
 – Speech Acts
 – Grice’s Maxims (a famous bad idea!)
Information structure: given/new

- Where are my **shoes**? Your **shoes** are in the **closet**
- What’s in the **closet**?
 - ??Your **shoes** are in the **closet**.
 - Your **shoes** are in the **closet**.

- Definiteness/pronoun, length, position in S
Coherence, Cohesion

• Coherence relations:
 – John hid Bill’s car keys. He was drunk.
 – John hid Bill’s car keys. He likes spinach.

• Entity-based coherence (Centering) and lexical cohesion:
 – John went to the store to buy a piano
 – He had gone to the store for many years
 – He was excited that he could finally afford a piano
 – He arrived just as the store was closing for the day versus
 – John went to the store to buy a piano
 – It was a store he had gone to for many years
 – He was excited that he could finally afford a piano
 – It was closing for the day just as John arrived
Coherence Relations

S1: John went to the bank to deposit his paycheck
S2: He then took a bus to Bill’s car dealership
S3: He needed to buy a car
S4: The company he works for now isn’t near a bus line
S5: He also wanted to talk with Bill about their soccer league
6.12. **Example** (Preceded by “A woman snorts”.)

1. A woman walks. She collapses.

<table>
<thead>
<tr>
<th>x, y</th>
<th>woman(x)</th>
<th>snort(x)</th>
<th>collapse(y)</th>
<th>y = x</th>
</tr>
</thead>
</table>

2. Every woman walks. *She collapses.

```
y

<table>
<thead>
<tr>
<th>x</th>
<th>woman(x)</th>
<th>walk(x)</th>
<th>collapses(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*y = x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

from

Raffaella Bernardi,
Trento
Pragmatics

Pragmatics is a branch of linguistics dealing with language use in context.

When a diplomat says yes, he means ‘perhaps’;
When he says perhaps, he means ‘no’;
When he says no, he is not a diplomat.

(Variously attributed to Voltaire, H. L. Mencken, and Carl Jung)
In Context?

• Social context
 – Social identities, relationships, and setting
• Physical context
 – Where? What objects are present? What actions?
• Linguistic context
 – Conversation history
• Other forms of context
 – Shared knowledge, etc.
(Direct) Speech Acts

- **Mood** of a sentence indicates relation between speaker and the concept (proposition) defined by the LF

- There can be operators that represent these relations:
 - ASSERT: the proposition is proposed as a fact
 - YN-QUERY: the truth of the proposition is queried
 - COMMAND: the proposition describes a requested action
 - WH-QUERY: the proposition describes an object to be identified
Indirect Speech Acts

• Can you pass the salt?

• It’s warm in here.
Task-Oriented Dialogue

• Making travel reservations (flight, hotel room, etc.)
• Scheduling a meeting.
• Task oriented dialogues that are frequently done with computers:
 – Finding out when the next bus is.
 – Making a payment over the phone.
Ways to ask for a room

• I’d like to make a reservation
• I’m calling to make a reservation
• Do you have a vacancy on ...
• Can I reserve a room
• Is it possible to reserve a room
Task-oriented dialogue acts related to negotiation

• Suggest
 – I recommend this hotel.

• Offer
 – I can send some brochures.
 – How about if I send some brochures.

• Accept
 – Sure. That sounds fine.

• Reject
 – No. I don’t like that one.
"No, Thursday's out. How about never—is never good for you?"
Now, a famous bad idea
(linked to a good idea)
Grice’s Maxims

• Why do these make sense?
 – Are you 21?
 – Yes. I’m 25.

 – I’m hungry.
 – I’ll get my keys.

 – Where can I get cigarettes?
 – There is a gas station across the street.
Grice’s Maxims

• Why are these strange?

 – (The students are all girls.)
 – Some students are girls.

 – (There are seven non-stop flights.)
 – There are three non-stop flights.

 • Jurafsky and Martin, page 820

 – (In a letter of recommendation for a job)
 – I strongly praise the applicant’s impeccable handwriting.
Grice’s Cooperative Principle

- “Make your contribution such as it is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged.”

- The Cooperative Principle is good and right.

- On the other hand, we have the Maxims:
Grice’s actual Maxims

• Maxim of Quality
 – Try to say something true; do not say something false or for which you lack evidence.

• Maxim of Quantity
 – Say as much as is required to be informative
 – Do not make your contribution more informative than required

• Maxim of Relevance
 – Be Relevant

• Maxim of Manner
 – Be perspicuous
 – Avoid ambiguity
 – Be brief
 – Be orderly
Flouting the Cooperative Principle

• “Nice throw.” *said after terrible throw*

• “If you run a little slower, you’ll never catch up to the ball.” *during mediocre pursuit of ball*

• You *can* indeed imply something by clearly violating the principle.
 – The Maxims *still* suck.
Flout ≠ Flaunt

- *Flout*: openly disregard (a rule, law or convention).

- *Flaunt*: display (something) ostentatiously, especially in order to provoke envy or admiration or to show defiance.

 — Source: Google
My paper on the Maxims

- **Grice's Maxims: "Do the Right Thing"** by Robert E. Frederking. Argues that the Gricean maxims are too vague to be useful for natural language processing. [from Wikipedia article]

- “I used to think you were a nice guy.”
 – Actual quote from a grad student, after reading the paper
Questions?