Algorithms for NLP

Parsing I

Yulia Tsvetkov – CMU

Slides: Ivan Titov – University of Edinburgh, Taylor Berg-Kirkpatrick – CMU/UCSD, Dan Klein – UC Berkeley
Ambiguity

- I saw a girl with a telescope
The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market.
A Supervised ML Problem

- Data for parsing experiments:
 - Penn WSJ Treebank = 50,000 sentences with associated trees
 - Usual set-up: 40,000 training, 2,400 test

Canadian Utilities had 1988 revenue of $1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.
Outline

- Syntax: intro, CFGs, PCFGs
- CFGs: Parsing
- PCFGs: Parsing
- Parsing evaluation
Syntax
Syntax

- The study of the patterns of formation of sentences and phrases from word

- my dog Pron N
- the dog Det N
- the cat Det N
- the large cat Det Adj N
- the black cat Det Adj N
- ate a sausage V Det N
Syntax

- The study of the patterns of formation of sentences and phrases from word
 - Borders with semantics and morphology sometimes blurred

Afyonkarahisarlılaştırabildiklerimizdenmişsinizcesineee

in Turkish means

"as if you are one of the people that we thought to be originating from Afyonkarahisar" [wikipedia]
The process of predicting syntactic representations

Syntactic Representations

Different types of syntactic representations are possible, for example:

Constuent (a.k.a. phrase-structure) tree
Constituent trees

- Internal nodes correspond to phrases
 - S – a sentence
 - NP (Noun Phrase): My dog, a sandwich, lakes, ...
 - VP (Verb Phrase): ate a sausage, barked, …
 - PP (Prepositional phrases): with a friend, in a car, …

- Nodes immediately above words are PoS tags (aka preterminals)
 - PN – pronoun
 - D – determiner
 - V – verb
 - N – noun
 - P – preposition
Bracketing notation

- It is often convenient to represent a tree as a bracketed sequence

(S
 (NP (PN My) (N Dog))
 (VP (V ate)
 (NP (D a) (N sausage))
)
)
The process of predicting syntactic representations

Syntactic Representations

- Different types of syntactic representations are possible, for example:

Constituent (a.k.a. phrase-structure) tree

Dependency tree
Dependency trees

- Nodes are words (along with PoS tags)
- Directed arcs encode syntactic dependencies between them
- Labels are types of relations between the words
 - poss – possesive
 - dobj – direct object
 - nsub - subject
 - det - determiner
Recovering shallow semantics

- Some semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are (often) agents ("initiator / doers for an action")
 - Direct objects (dobj) are (often) patients ("affected entities")
Recovering shallow semantics

- Some semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are (often) agents ("initiator / doers for an action")
 - Direct objects (dobj) are (often) patients ("affected entities")
- But even for agents and patients consider:
 - Mary is baking a cake in the oven
 - A cake is baking in the oven
- In general it is not trivial even for the most shallow forms of semantics
 - E.g., consider prepositions: *in* can encode direction, position, temporal information, …
Constituent and dependency representations

- Constituent trees can (potentially) be converted to dependency trees

- Dependency trees can (potentially) be converted to constituent trees
Constituent trees

- **Internal nodes correspond to phrases**
 - **S** – a sentence
 - **NP** (Noun Phrase): My dog, a sandwich, lakes,
 - **VP** (Verb Phrase): ate a sausage, barked, …
 - **PP** (Prepositional phrases): with a friend, in a car, …

- **Nodes immediately above words are PoS tags (aka preterminals)**
 - PN – pronoun
 - D – determiner
 - V – verb
 - N – noun
 - P – preposition
Constituency Tests

- How do we know what nodes go in the tree?

- Classic constituency tests:
 - Substitution by *proform*
 - Movement
 - Clefting
 - Preposing
 - Passive
 - Modification
 - Coordination/Conjunction
 - Ellipsis/Deletion
Conflicting Tests

- Constituency isn’t always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go → I’ll go
 - I want to go → I wanna go
 - a le centre → au centre
CFGs
Context Free Grammar (CFG)

<table>
<thead>
<tr>
<th>Grammar (CFG)</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOT → S</td>
<td>NN → interest</td>
</tr>
<tr>
<td>S → NP VP</td>
<td>NNS → raises</td>
</tr>
<tr>
<td>NP → DT NN</td>
<td>VBP → interest</td>
</tr>
<tr>
<td>NP → NN NNS</td>
<td>VBZ → raises</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

- **Other grammar formalisms:** LFG, HPSG, TAG, CCG…
((S (NP-SBJ The move)
 (VP followed
 (NP (NP a round)
 (PP of
 (NP (NP similar increases)
 (PP by
 (NP other lenders))
 (PP against
 (NP Arizona real estate loans))))))
,
 (S-ADV (NP-SBJ *)
 (VP reflecting
 (NP (NP a continuing decline)
 (PP-LOC in
 (NP that market))))))
.)
 CFGs

\[
S \rightarrow NP \ VF
\]

\[
NP \rightarrow NP \ PF
\]

\[
NP \rightarrow D \ N
\]

\[
NP \rightarrow PN
\]

\[
PP \rightarrow P \ NF
\]

\[
VP \rightarrow V
\]

\[
VP \rightarrow V \ NF
\]

\[
VP \rightarrow VP \ PF
\]

\[
PN \rightarrow I
\]

\[
V \rightarrow saw
\]

\[
V \rightarrow ate
\]

\[
P \rightarrow with
\]

\[
P \rightarrow in
\]

\[
D \rightarrow a
\]

\[
D \rightarrow the
\]

\[
N \rightarrow girl
\]

\[
N \rightarrow telescope
\]

\[
N \rightarrow sandwich
\]
CFGs

\[S \rightarrow NP \ VF \]
\[VP \rightarrow V \]
\[VP \rightarrow V \ NF \]
\[VP \rightarrow VP \ PF \]
\[NP \rightarrow NP \ PF \]
\[NP \rightarrow D \ N \]
\[PP \rightarrow P \ NF \]
\[N \rightarrow girl \]
\[N \rightarrow telescope \]
\[N \rightarrow sandwich \]
\[PN \rightarrow I \]
\[V \rightarrow saw \]
\[V \rightarrow ate \]
\[P \rightarrow with \]
\[P \rightarrow in \]
\[D \rightarrow a \]
\[D \rightarrow the \]
CFGs

\[S \rightarrow NP \ VF \]
\[NP \rightarrow D\ N \]
\[NP \rightarrow PN \]
\[VP \rightarrow V \]
\[VP \rightarrow V \ NF \]
\[VP \rightarrow VP \ PF \]
\[PN \rightarrow I \]
\[PN \rightarrow I \]
\[V \rightarrow saw \]
\[V \rightarrow ate \]
\[P \rightarrow with \]
\[P \rightarrow in \]
\[D \rightarrow a \]
\[D \rightarrow the \]
CFGs

\[S \rightarrow NP \ VF \]
\[VP \rightarrow V \]
\[VP \rightarrow V \ NP \]
\[VP \rightarrow VP \ PF \]
\[NP \rightarrow NP \ PF \]
\[NP \rightarrow D \ N \]
\[NP \rightarrow PN \]
\[PP \rightarrow P \ NF \]

\[N \rightarrow girl \]
\[N \rightarrow telescope \]
\[N \rightarrow sandwich \]
\[PN \rightarrow I \]
\[V \rightarrow saw \]
\[V \rightarrow ate \]
\[P \rightarrow with \]
\[P \rightarrow in \]
\[D \rightarrow a \]
\[D \rightarrow the \]
CFGs

\[S \rightarrow NP \ VF \]
\[VP \rightarrow V \]
\[VP \rightarrow V \ NF \]
\[VP \rightarrow VP \ PF \]
\[NP \rightarrow NP \ PF \]
\[NP \rightarrow D \ N \]
\[NP \rightarrow PN \]
\[PP \rightarrow P \ NF \]

\[N \rightarrow girl \]
\[N \rightarrow telescope \]
\[N \rightarrow sandwich \]
\[PN \rightarrow I \]
\[V \rightarrow saw \]
\[V \rightarrow ate \]
\[P \rightarrow with \]
[\[P \rightarrow in \]
\[D \rightarrow a \]
\[D \rightarrow the \]
CFGs

\[
S \rightarrow NP \ VF \\
N \rightarrow girl \\
N \rightarrow telescope \\
VP \rightarrow V \\
N \rightarrow sandwich \\
VP \rightarrow V \ NF \\
PN \rightarrow I \\
VP \rightarrow VP \ PF \\
V \rightarrow saw \\
P \rightarrow with \\
NP \rightarrow NP \ PF \\
P \rightarrow in \\
PN \rightarrow D \ N \\
D \rightarrow a \\
NP \rightarrow PN \\
P \rightarrow the \\
PP \rightarrow P \ NP \\
\]

\[
S \rightarrow NP \ VF \\
NP \rightarrow PN \\
I \rightarrow saw \\
PN \rightarrow I \\
VP \rightarrow VP \\
P \rightarrow with \\
PP \rightarrow P \\
NP \rightarrow PN \\
PP \rightarrow P \ NF \\
\]

Diagram of a CFG:

- **S**: The start symbol, which can be replaced by NP followed by VF.
- **NP**: Can be replaced by PN followed by NF or by D followed by N.
- **VP**: Can be replaced by a verb (V) or another VP.
- **PP**: Can be replaced by a preposition (P) followed by NF.
- **I**: Represents the verb "saw".
- **N**: Represents a noun, with rules for specific nouns like "girl" and "sandwich".
- **D**: Represents a determiner, with rules for specific determiners like "a" and "the".

The diagram shows the hierarchical structure of phrases and their transformations based on the rules of the CFG.
CFGs

\[S \rightarrow NP \ VP \]

\[V \rightarrow \text{eat} \]

\[V \rightarrow \text{ate} \]

\[N \rightarrow \text{girl} \]

\[N \rightarrow \text{telescope} \]

\[N \rightarrow \text{sandwich} \]

\[PN \rightarrow I \]

\[V \rightarrow \text{saw} \]

\[V \rightarrow \text{ate} \]

\[P \rightarrow \text{with} \]

\[P \rightarrow \text{in} \]

\[D \rightarrow a \]

\[D \rightarrow the \]
CFGs

\[S \rightarrow NP \ VF \]
\[VP \rightarrow V \]
\[VP \rightarrow VP \ NP \]
\[VP \rightarrow V \ NP \]
\[VP \rightarrow VP \ PF \]
\[NP \rightarrow NP \ PF \]
\[NP \rightarrow D \ N \]
\[NP \rightarrow PN \]
\[PP \rightarrow P \ NP \]
\[PP \rightarrow P \ NF \]

\[N \rightarrow girl \]
\[N \rightarrow telescope \]
\[N \rightarrow sandwich \]
\[PN \rightarrow I \]
\[V \rightarrow saw \]
\[V \rightarrow ate \]
\[P \rightarrow with \]
\[P \rightarrow in \]
\[D \rightarrow a \]
\[D \rightarrow the \]
A context-free grammar is a 4-tuple $<N, T, S, R>$

- N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB

- T : the set of terminals (the words)

- S : the start symbol
 - Often written as ROOT or TOP
 - *Not* usually the sentence non-terminal S

- R : the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \ldots Y_k$, with $X, Y_i \in N$
 - Examples: $S \rightarrow NP \ VP$, $VP \rightarrow VP \ CC \ VP$
 - Also called rewrites, productions, or local trees
An example grammar

\[N = \{ S, VP, NP, PP, N, V, PN, P \} \]
\[T = \{ girl, telescope, sandwich, I, saw, ate, with, in, a, the \} \]
\[S = \{ S \} \]
\[R \]

\[S \rightarrow NP \quad VP \]
\[VP \rightarrow V \]
\[VP \rightarrow V \quad NP \]
\[VP \rightarrow VP \quad PF \]
\[NP \rightarrow NP \quad PF \]
\[NP \rightarrow D \quad N \]
\[NP \rightarrow PN \]
\[PP \rightarrow P \quad NF \]

Called **Inner rules**

Preterminal rules

\[N \rightarrow girl \]
\[N \rightarrow telescope \]
\[N \rightarrow sandwich \]
\[PN \rightarrow I \]
\[V \rightarrow saw \]
\[V \rightarrow ate \]
\[P \rightarrow with \]
\[P \rightarrow in \]
\[D \rightarrow a \]
\[D \rightarrow the \]
Why context-free?

What can be a sub-tree is only affected by what the phrase type is (VP) but not the context.
Why context-free?

What can be a sub-tree is only affected by what the phrase type is (VP) but not the context.

Not grammatical.
Here, the coarse VP and NP categories cannot enforce subject-verb agreement in number resulting in the coordination ambiguity.

"Bark" can refer both to a noun or a verb.

This tree would be ruled out if the context would be somehow captured (subject-verb agreement).
Ambiguities
Why parsing is hard? Ambiguity

- Prepositional phrase attachment ambiguity
Put the block in the box on the table in the kitchen

3 prepositional phrases, 5 interpretations:

- Put the block ((in the box on the table) in the kitchen)
- Put the block (in the box (on the table in the kitchen))
- Put ((the block in the box) on the table) in the kitchen.
- Put (the block (in the box on the table)) in the kitchen.
- Put (the block in the box) (on the table in the kitchen)
Put the block in the box on the table in the kitchen

- 3 prepositional phrases, 5 interpretations:
 - Put the block ((in the box on the table) in the kitchen)
 - Put the block (in the box (on the table in the kitchen))
 - Put ((the block in the box) on the table) in the kitchen.
 - Put (the block (in the box on the table)) in the kitchen.
 - Put (the block in the box) (on the table in the kitchen)

- A general case:

\[
C_{at_n} = \binom{2n}{n} - \binom{2n}{n-1} \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}
\]

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, …
Canadian Utilities had 1988 revenue of $1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.
Syntactic Ambiguities I

- Prepositional phrases:
 They cooked the beans in the pot on the stove with handles.

- Particle vs. preposition:
 The puppy tore up the staircase.

- Complement structures
 The tourists objected to the guide that they couldn’t hear.
 She knows you like the back of her hand.

- Gerund vs. participial adjective
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.
Syntactic Ambiguities II

- Modifier scope within NPs
 impractical design requirements
 plastic cup holder

- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.

- Coordination scope:
 Small rats and mice can squeeze into holes or cracks in the wall.
- **Dark ambiguities**: most analyses are shockingly bad (meaning, they don’t have an interpretation you can get your mind around)

 This analysis corresponds to the correct parse of

 “This is panic buying!”

- **Unknown words and new usages**
- **Solution**: We need mechanisms to focus attention on the best ones, probabilistic techniques do this
How to Deal with Ambiguity?

- We want to score all the derivations to encode how plausible they are.

Put the block in the box on the table in the kitchen
PCFGs
A context-free grammar is a tuple <N, T, S, R>

- N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- T : the set of terminals (the words)
- S : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R : the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \ldots Y_k$, with $X, Y_i \in N$
 - Examples: $S \rightarrow NP \; VP$, $VP \rightarrow VP \; CC \; VP$
 - Also called rewrites, productions, or local trees

A PCFG adds:
- A top-down production probability per rule $P(Y_1 Y_2 \ldots Y_k \mid X)$
PCFGs

Associate probabilities with the rules:

\[p(X \rightarrow \alpha) \]

\[\forall X \rightarrow \alpha \in R : \quad 0 \leq p(X \rightarrow \alpha) \leq 1 \]

\[\forall X \in N : \quad \sum_{\alpha : X \rightarrow \alpha \in R} p(X \rightarrow \alpha) = 1 \]

\[S \rightarrow NP \ VF \quad 1.0 \quad (NP \ A \ girl) \ (VP \ ate \ a \ sandwich) \]

\[VP \rightarrow V \quad 0.2 \]

\[VP \rightarrow V \ NF \quad 0.4 \quad (VP \ ate) \ (NP \ a \ sandwich) \]

\[VP \rightarrow VP \ PF \quad 0.4 \quad (VP \ saw \ a \ girl) \ (PP \ with \ …) \]

\[NP \rightarrow NP \ PF \quad 0.3 \quad (NP \ a \ girl) \ (PP \ with \ ….) \]

\[NP \rightarrow D \ N \quad 0.5 \quad (D \ a) \ (N \ sandwich) \]

\[NP \rightarrow PN \quad 0.2 \]

\[PP \rightarrow P \ NF \quad 1.0 \quad (P \ with) \ (NP \ with \ a \ sandwich) \]

Now we can score a tree as a product of probabilities corresponding to the used rules.

\[\hat{N} \rightarrow girl \quad 0.2 \]

\[N \rightarrow telescope \quad 0.7 \]

\[N \rightarrow sandwich \quad 0.1 \]

\[PN \rightarrow I \quad 1.0 \]

\[V \rightarrow saw \quad 0.5 \]

\[V \rightarrow ate \quad 0.5 \]

\[P \rightarrow with \quad 0.6 \]

\[P \rightarrow in \quad 0.4 \]

\[D \rightarrow a \quad 0.3 \]

\[D \rightarrow the \quad 0.7 \]
PCFGs

\[
S \rightarrow NP \ VP \ 1.0 \\
VP \rightarrow V \ 0.2 \\
NP \rightarrow NP \ PF \ 0.3 \\
NP \rightarrow D \ N \ 0.5 \\
NP \rightarrow PN \ 0.2 \\
PP \rightarrow P \ NF \ 1.0
\]

\[
N \rightarrow girl \ 0.2 \\
N \rightarrow telescope \ 0.7 \\
N \rightarrow sandwich \ 0.1 \\
PN \rightarrow I \ 1.0 \\
V \rightarrow saw \ 0.5 \\
V \rightarrow ate \ 0.5 \\
P \rightarrow with \ 0.6 \\
P \rightarrow in \ 0.4 \\
D \rightarrow a \ 0.3 \\
D \rightarrow the \ 0.7
\]

\[p(T) = \]
PCFGs

\[
p(T) = 1.0 \times
\]

\[
S \rightarrow NP \ VF 1.0
\]

\[
VP \rightarrow V 0.2
\]

\[
VP \rightarrow V \ NP 0.4
\]

\[
VP \rightarrow VP \ PF 0.4
\]

\[
NP \rightarrow NP \ PF 0.3
\]

\[
NP \rightarrow D \ N 0.5
\]

\[
NP \rightarrow PN 0.2
\]

\[
PP \rightarrow P \ NF 1.0
\]

\[
N \rightarrow girl 0.2
\]

\[
N \rightarrow telescope 0.7
\]

\[
N \rightarrow sandwich 0.1
\]

\[
PN \rightarrow I 1.0
\]

\[
V \rightarrow saw 0.5
\]

\[
V \rightarrow ate 0.5
\]

\[
P \rightarrow with 0.6
\]

\[
P \rightarrow in 0.4
\]

\[
D \rightarrow a 0.3
\]

\[
D \rightarrow the 0.7
\]
PCFGs

\[S \rightarrow NP \ VF \ 1.0 \]
\[VP \rightarrow V \ 0.2 \]
\[VP \rightarrow V \ NF \ 0.4 \]
\[VP \rightarrow VP \ PF \ 0.4 \]
\[NP \rightarrow NP \ PF \ 0.3 \]
\[NP \rightarrow D \ N \ 0.5 \]
\[NP \rightarrow PN \ 0.2 \]
\[PP \rightarrow P \ NF \ 1.0 \]
\[N \rightarrow girl \ 0.2 \]
\[N \rightarrow telescope \ 0.7 \]
\[N \rightarrow sandwich \ 0.1 \]
\[PN \rightarrow I \ 1.0 \]
\[V \rightarrow saw \ 0.5 \]
\[V \rightarrow ate \ 0.5 \]
\[P \rightarrow with \ 0.6 \]
\[P \rightarrow in \ 0.4 \]
\[D \rightarrow a \ 0.3 \]
\[D \rightarrow the \ 0.7 \]

\[p(T) = 1.0 \times 0.2 \times \]
PCFGs

\[S \rightarrow NP \ VF \ 1.0 \]
\[VP \rightarrow V \ 0.2 \]
\[VP \rightarrow V \ NF \ 0.4 \]
\[VP \rightarrow VP \ PF \ 0.4 \]
\[NP \rightarrow NP \ PF \ 0.3 \]
\[NP \rightarrow D \ N \ 0.5 \]
\[NP \rightarrow PN \ 0.2 \]
\[PP \rightarrow P \ NF \ 1.0 \]
\[N \rightarrow girl \ 0.2 \]
\[N \rightarrow telescope \ 0.7 \]
\[N \rightarrow sandwich \ 0.1 \]
\[PN \rightarrow I \ 1.0 \]
\[V \rightarrow saw \ 0.5 \]
\[V \rightarrow ate \ 0.5 \]
\[P \rightarrow with \ 0.6 \]
\[P \rightarrow in \ 0.4 \]
\[D \rightarrow a \ 0.3 \]
\[D \rightarrow the \ 0.7 \]

\[p(T) = 1.0 \times 0.2 \times 1.0 \times \]
PCFGs

$S \to NP \ VF\ 1.0$

$VP \to V\ 0.2$

$VP \to V \ NF\ 0.4$

$VP \to VP \ PF\ 0.4$

$NP \to NP \ PF\ 0.3$

$NP \to D\ N\ 0.5$

$NP \to PN\ 0.2$

$PP \to P \ NF\ 1.0$

$N \to girl\ 0.2$

$N \to telescope\ 0.7$

$N \to sandwich\ 0.1$

$PN \to I\ 1.0$

$V \to saw\ 0.5$

$V \to ate\ 0.5$

$P \to with\ 0.6$

$P \to in\ 0.4$

$D \to a\ 0.3$

$D \to the\ 0.7$

$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times$
PCFGs

\[p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times \]
PCFGs

\[p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times \]

\[
S \rightarrow NP \ VF \ 1.0
\]

\[
N \rightarrow \text{girl} \ 0.2
\]

\[
N \rightarrow \text{telescope} \ 0.7
\]

\[
V \rightarrow \text{ate} \ 0.5
\]

\[
P \rightarrow \text{with} \ 0.6
\]

\[
P \rightarrow \text{in} \ 0.4
\]

\[
P \rightarrow \text{the} \ 0.7
\]
PCFGs

\[
p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7 = 2.26 \times 10^{-5}
\]
PCFG Estimation
ML estimation

- A treebank: a collection sentences annotated with constituent trees

- An estimated probability of a rule (maximum likelihood estimates)

\[p(X \rightarrow \alpha) = \frac{C(X \rightarrow \alpha)}{C(X)} \]

 - The number of times the rule used in the corpus
 - The number of times the nonterminal X appears in the treebank

- Smoothing is helpful
 - Especially important for preterminal rules
We defined a distribution over production rules for each nonterminal. Our goal was to define a distribution over parse trees. Unfortunately, not all PCFGs give rise to a proper distribution over trees, i.e. the sum over probabilities of all trees the grammar can generate may be less than 1: \(\sum_T P(T) < 1 \). Good news: any PCFG estimated with the maximum likelihood procedure are always proper (Chi and Geman, 98).
Penn Treebank: peculiarities

- Wall street journal: around 40,000 annotated sentences, 1,000,000 words
 - Fine-grained part of speech tags (45), e.g., for verbs
 - VBD: Verb, past tense
 - VBG: Verb, gerund or present participle
 - VBP: Verb, present (non-3rd person singular)
 - VBZ: Verb, present (3rd person singular)
 - MD: Modal

- Flat NPs (no attempt to disambiguate NP attachment)
CKY Parsing
Parsing

- Parsing is search through the space of all possible parses
 - e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):
 \[
 \text{arg max } P(T) \\
 T \in G(x)
 \]

- Bottom-up:
 - One starts from words and attempt to construct the full tree

- Top-down
 - Start from the start symbol and attempt to expand to get the sentence
CKY algorithm (aka CYK)

- Cocke-Kasami-Younger algorithm
 - Independently discovered in late 60s / early 70s

- An efficient bottom up parsing algorithm for (P)CFGs
 - can be used both for the recognition and parsing problems
 - Very important in NLP (and beyond)

- We will start with the non-probabilistic version
Constraints on the grammar

- The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

 \[C \rightarrow x \]

 \[C \rightarrow C_1 C_2 \]

 - **Unary preterminal** rules (generation of words given PoS tags):

 \[N \rightarrow \text{telescope} \quad D \rightarrow \text{the} \]

 - **Binary inner** rules:

 \[S \rightarrow NP VF \quad NP \rightarrow D \quad N \]
Constraints on the grammar

- The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

 \[C \rightarrow x \]

 \[C \rightarrow C_1 C_2 \]

- Any CFG can be converted to an equivalent CNF
 - Equivalent means that they define the same language
 - However (syntactic) trees will look differently
 - It is possible to address it by defining such transformations that allows for easy reverse transformation
Transformation to CNF form

What one need to do to convert to CNF form

- Get rid of unary rules: $C \rightarrow C_1$
- Get rid of N-ary rules: $C \rightarrow C_1 C_2 \ldots C_n \ (n > 2)$

Not a problem, as our CKY algorithm will support unary rules

Crucial to process them, as required for efficient parsing
Consider \[NP \rightarrow DT \ NNP \ VBG \ NN \]

- How do we get a set of binary rules which are equivalent?
Consider

\[NP \rightarrow DT \ NNP \ VBG \ NN \]

\[
\text{NP}
\]
\[
\text{DT} \quad \text{NNP} \quad \text{VBG} \quad \text{NN}
\]
\[
\begin{align*}
\text{the} & \quad \text{Dutch} & \quad \text{publishing} & \quad \text{group}
\end{align*}
\]

How do we get a set of binary rules which are equivalent?

\[NP \rightarrow DT \ X \]
\[X \rightarrow NNP \ Y \]
\[Y \rightarrow VBG \ NN \]
Transformation to CNF form: binarization

- Consider

\[NP \rightarrow DT \ NNP \ VBG \ NN \]

\[
\text{NP} \\
\downarrow \\
\text{DT} \quad \text{NNP} \quad \text{VBG} \quad \text{NN} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\text{the} \quad \text{Dutch} \quad \text{publishing} \quad \text{group}
\]

- How do we get a set of binary rules which are equivalent?

\[
NP \rightarrow DT \ X \\
X \rightarrow NNP \ Y \\
Y \rightarrow VBG \ NN
\]

- A more systematic way to refer to new non-terminals

\[
NP \rightarrow DT \ @NP|DT \\
@NP|DT \rightarrow NNP \ @NP|DT.NNP \\
@NP|DT.NNP \rightarrow VBG \ NN
\]
Transformation to CNF form: binarization

- Instead of binarizing tuples we can binarize trees on preprocessing:

```
NP
  |   
  v   
DT   NNP  VBG  NN
  the  Dutch  publishing  group
```

Also known as lossless Markovization in the context of PCFGs

```
NP
  |   
  v   
DT  @NP->_DT
  the

NP
  |   
  v   
DT  @NP->_DT_NNP
  the

NP
  |   
  v   
NNP  @NP->_DT_NNP
  Dutch

NP
  |   
  v   
VBG  NN
  publishing  group
```

Can be easily reversed on postprocessing
 CKY: Parsing task

- We are given
 - a grammar $<N, T, S, R>$
 - a sequence of words $w = (w_1, w_2, \ldots, w_n)$

- Our goal is to produce a parse tree for w
CKY: Parsing task

- We are given
 - a grammar \(<N, T, S, R> \)
 - a sequence of words \(w = (w_1, w_2, \ldots, w_n) \)
- Our goal is to produce a parse tree for \(w \)
- We need an easy way to refer to substrings of \(w \)

\(\text{span } (i, j) \) refers to words between fenceposts \(i \) and \(j \)
Parsing one word

\[C \rightarrow w_i \]
Parsing one word

\[C \rightarrow w_i \]
Parsing one word

$C \rightarrow w_i$

covers all words
between $i - 1$ and i
Parsing longer spans

$C \rightarrow C_1 \ C_2$

Check through all C1, C2, mid

covers all words btw min and mid covers all words btw mid and max
Parsing longer spans

\[C \rightarrow C_1 \quad C_2 \]

Check through all C1, C2, mid

covers all words btw min and mid

covers all words btw mid and max
Parsing longer spans

covers all words between min and max
CKY in action

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Preterminal rules

- **S → NP VP**

Inner rules

- **VP → M V**
- **VP → V**
- **NP → N**
- **NP → N NP**

Terminal rules

- **N → can**
- **N → lead**
- **N → poison**
- **M → can**
- **M → must**
- **V → poison**
- **V → lead**
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1 max = 2 max = 3

min = 0

min = 1

min = 2

Chart (aka parsing triangle)

Inner rules

\[S \rightarrow NP \; VP \]

\[VP \rightarrow M \; V \]

\[VP \rightarrow V \]

\[NP \rightarrow N \]

\[NP \rightarrow N \; NP \]

Preterminal rules

\[N \rightarrow can \]

\[N \rightarrow lead \]

\[N \rightarrow poison \]

\[M \rightarrow can \]

\[M \rightarrow must \]

\[V \rightarrow poison \]

\[V \rightarrow lead \]
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Inner rules

\[S \rightarrow NP \ VP \]

\[VP \rightarrow M \ V \]

\[NP \rightarrow N \]

\[NP \rightarrow N \ NP \]

\[N \rightarrow can \]

\[N \rightarrow lead \]

\[N \rightarrow poison \]

\[M \rightarrow can \]

\[M \rightarrow must \]

\[V \rightarrow poison \]

\[V \rightarrow lead \]
$S \rightarrow NP \ VP$

$VP \rightarrow M \ V$

$NP \rightarrow N$

$NP \rightarrow N \ NP$

$N \rightarrow can$

$N \rightarrow lead$

$N \rightarrow poison$

$M \rightarrow can$

$M \rightarrow must$

$V \rightarrow poison$

$V \rightarrow lead$
\[
S \rightarrow NP \ VP \\
VP \rightarrow M \ V \\
NP \rightarrow N \\
NP \rightarrow N \ NP \\
N \rightarrow can \\
N \rightarrow lead \\
N \rightarrow poison \\
M \rightarrow can \\
M \rightarrow must \\
V \rightarrow poison \\
V \rightarrow lead
\]
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Preterminal rules

Inner rules

\[
S \rightarrow NP \ VP
\]

\[
VP \rightarrow M \ V
\]

\[
VP \rightarrow V
\]

\[
NP \rightarrow N
\]

\[
NP \rightarrow N \ NP
\]

\[
N \rightarrow can
\]

\[
N \rightarrow lead
\]

\[
N \rightarrow poison
\]

\[
M \rightarrow can
\]

\[
M \rightarrow must
\]

\[
V \rightarrow poison
\]

\[
V \rightarrow lead
\]
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1 max = 2 max = 3

min = 0

min = 1

min = 2

S

Inner rules

Preterminal rules

$S \rightarrow NP \ VP$

$VP \rightarrow M \ V$

$VP \rightarrow V$

$NP \rightarrow N$

$NP \rightarrow N \ NP$

$N \rightarrow can$

$N \rightarrow lead$

$N \rightarrow poison$

$M \rightarrow can$

$M \rightarrow must$

$V \rightarrow poison$

$V \rightarrow lead$
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Inner rules

\[
S \rightarrow NP \ VP
\]

\[
VP \rightarrow M \ V
\]

\[
VP \rightarrow V
\]

\[
NP \rightarrow N
\]

\[
NP \rightarrow N \ NP
\]

Preterminal rules

\[
N \rightarrow can
\]

\[
N \rightarrow lead
\]

\[
N \rightarrow poison
\]

\[
M \rightarrow can
\]

\[
M \rightarrow must
\]

\[
V \rightarrow poison
\]

\[
V \rightarrow lead
\]
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Preterminal rules

\[S \rightarrow NP \ VP \]

\[VP \rightarrow M \ V \]
\[VP \rightarrow V \]

\[NP \rightarrow N \]
\[NP \rightarrow N \ NP \]

Inner rules

\[N \rightarrow can \]
\[N \rightarrow lead \]
\[N \rightarrow poison \]

Preterminal rules

\[M \rightarrow can \]
\[M \rightarrow must \]

\[V \rightarrow poison \]
\[V \rightarrow lead \]
Preterminal rules

\[S \rightarrow NP \ VP \]

Inner rules

\[VP \rightarrow M \ V \]
\[VP \rightarrow V \]

\[NP \rightarrow N \]
\[NP \rightarrow N \ NP \]

Preterminal rules

\[N \rightarrow can \]
\[N \rightarrow lead \]
\[N \rightarrow poison \]

\[M \rightarrow can \]
\[M \rightarrow must \]

\[V \rightarrow poison \]
\[V \rightarrow lead \]
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1 max = 2 max = 3

min = 0

1 \(N, V \)

min = 1

2 \(N, M \)

min = 2

3 \(N, V \)

Inner rules

\[
S \rightarrow NP \ VP
\]

\[
VP \rightarrow M \ V
\]

\[
VP \rightarrow V
\]

\[
NP \rightarrow N
\]

\[
NP \rightarrow N \ NP
\]

Preterminal rules

\[
N \rightarrow can
\]

\[
N \rightarrow lead
\]

\[
N \rightarrow poison
\]

\[
M \rightarrow can
\]

\[
M \rightarrow must
\]

\[
V \rightarrow poison
\]

\[
V \rightarrow lead
\]
Check about unary rules
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

max = 1 max = 2 max = 3

min = 0 min = 1 min = 2

1. N, V
 NP, VP

2. N, M
 NP

3. N, V
 NP, VP

4. $?$

Inner rules

$S \rightarrow NP \ VP$

$VP \rightarrow M \ V$

$VP \rightarrow V$

$NP \rightarrow N$

$NP \rightarrow N \ NP$

Preterminal rules

$N \rightarrow can$

$N \rightarrow lead$

$N \rightarrow poison$

$M \rightarrow can$

$M \rightarrow must$

$V \rightarrow poison$

$V \rightarrow lead$
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(min = 0)</th>
<th>(min = 1)</th>
<th>(min = 2)</th>
<th>max = 1</th>
<th>max = 2</th>
<th>max = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, V</td>
<td>N, M</td>
<td>N, V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP, VP</td>
<td>NP</td>
<td>NP, VP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$S \rightarrow NP \ VP$

$VP \rightarrow M \ V$

$VP \rightarrow V$

$NP \rightarrow N$

$NP \rightarrow N \ NP$

$N \rightarrow can$

$N \rightarrow lead$

$N \rightarrow poison$

$M \rightarrow can$

$M \rightarrow must$

$V \rightarrow poison$

$V \rightarrow lead$
\[
S \rightarrow NP \ VP
\]

\[
VP \rightarrow M \ V
\]

\[
VP \rightarrow V
\]

\[
NP \rightarrow N
\]

\[
NP \rightarrow N \ NP
\]

\[
N \rightarrow can
\]

\[
N \rightarrow lead
\]

\[
N \rightarrow poison
\]

\[
M \rightarrow can
\]

\[
M \rightarrow must
\]

\[
V \rightarrow poison
\]

\[
V \rightarrow lead
\]
Check about unary rules: no unary rules here
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>min = 0</th>
<th>min = 1</th>
<th>min = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- **1**: N, V
- **2**: N, M
- **3**: N, V
- **4**: NP
- **5**: ?

max = 1
- N, V, NP, VP

max = 2
- N, M

max = 3
- NP

Inner rules

- $S \rightarrow NP \ VP$
- $VP \rightarrow M \ V$
- $VP \rightarrow V$
- $NP \rightarrow N$
- $NP \rightarrow N \ NP$

Preterminal rules

- $N \rightarrow can$
- $N \rightarrow lead$
- $N \rightarrow poison$
- $M \rightarrow can$
- $M \rightarrow must$
- $V \rightarrow poison$
- $V \rightarrow lead$
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1 max = 2 max = 3

min = 0

1. N, V
 NP, VP

min = 1

2. N, M
 NP

min = 2

3. N, V
 NP, VP

4. NP

5. S, VP, NP

Inner rules

$S \rightarrow NP \ VP$

$VP \rightarrow M \ V$
$VP \rightarrow V$

$NP \rightarrow N$
$NP \rightarrow N \ NP$

Preterminal rules

$N \rightarrow can$
$N \rightarrow lead$
$N \rightarrow poison$

$M \rightarrow can$
$M \rightarrow must$

$V \rightarrow poison$
$V \rightarrow lead$
CKY in action

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Preterminal rules

- $S \rightarrow NP \ VP$
- $VP \rightarrow M \ V$
- $VP \rightarrow V$

Inner rules

- $NP \rightarrow N$
- $NP \rightarrow N \ NP$
- $N \rightarrow can$
- $N \rightarrow lead$
- $N \rightarrow poison$
- $M \rightarrow can$
- $M \rightarrow must$
- $V \rightarrow poison$
- $V \rightarrow lead$

Check about unary rules: no unary rules here
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1
max = 2
max = 3

min = 0
1. N, V
 NP, VP

min = 1
2. N, M
 NP

3. N, V
 NP, VP

4. NP

5. S, VP, NP

6. ?

$S \rightarrow NP \ VP$

$VP \rightarrow M \ V$

$VP \rightarrow V$

$NP \rightarrow N$

$NP \rightarrow N \ NP$

$N \rightarrow can$

$N \rightarrow lead$

$N \rightarrow poison$

$M \rightarrow can$

$M \rightarrow must$

$V \rightarrow poison$

$V \rightarrow lead$
Preterminal rules

Inner rules

S → NP VP

VP → M V

NP → N

NP → N NP

N → can

N → lead

N → poison

M → can

M → must

V → poison

V → lead
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1 max = 2 max = 3

min = 0

min = 1

min = 2

mid = 1

Inner rules

$$S \rightarrow NP \ VP$$

$$VP \rightarrow M \ V$$

$$VP \rightarrow V$$

$$NP \rightarrow N$$

$$NP \rightarrow N \ NP$$

Preterminal rules

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \rightarrow can$$

$$M \rightarrow must$$

$$V \rightarrow poison$$

$$V \rightarrow lead$$
Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1 max = 2 max = 3

min = 0

min = 1

min = 2

mid = 2

Inner rules

$S \rightarrow NP\ VP$

$VP \rightarrow M\ V$

$VP \rightarrow V$

$NP \rightarrow N$

$NP \rightarrow N\ NP$

Preterminal rules

$N \rightarrow can$

$N \rightarrow lead$

$N \rightarrow poison$

$M \rightarrow can$

$M \rightarrow must$

$V \rightarrow poison$

$V \rightarrow lead$
Apparently the sentence is ambiguous for the grammar: (as the grammar overgenerates)
Ambiguity

No subject-verb agreement, and poison used as an intransitive verb
CKY more formally

Chart can be represented by a Boolean 3D array $chart[\text{min}][\text{max}][\text{C}]$.

- Relevant entries have $0 < \text{min} < \text{max} \leq n$.

$chart[\text{min}][\text{max}][\text{C}] = \text{true}$ if the signature $(\text{min}, \text{max}, \text{C})$ is already added to the chart; false otherwise.

Here we assume that labels (C) are integer indices.
for each w_i from left to right

 for each preterminal rule $C \rightarrow w_i$

 chart[i - 1][i][C] = true
Implementation: binary rules

for each max from 2 to n

 for each min from max - 2 down to 0

 for each syntactic category C

 for each binary rule C → C₁ C₂

 for each mid from min + 1 to max - 1

 if chart[min][mid][C₁] and chart[mid][max][C₂] then

 chart[min][max][C] = true
 Unary rules

- How to integrate unary rules $C \rightarrow C_1$?
Unary rules

- How to integrate unary rules $C \rightarrow C_1$?

```plaintext
for each max from 1 to n
  for each min from max - 1 down to 0
    // First, try all binary rules as before.
...
    // Then, try all unary rules.
    for each syntactic category C
      for each unary rule $C \rightarrow C_1$
        if chart[min][max][C_1] then
          chart[min][max][C] = true
```
Unary rules

- How to integrate unary rules $C \rightarrow C_1$?

```plaintext
for each max from 1 to n
  for each min from max - 1 down to 0
    // First, try all binary rules as before.

...  

// Then, try all unary rules.

for each syntactic category C
  for each unary rule C \rightarrow C_1
    if chart[min][max][C_1] then

But we forgot something!
```
Unary closure

- What if the grammar contained 2 rules:
 \[
 A \rightarrow B \\
 B \rightarrow C
 \]

- But C can be derived from A by a chain of rules:
 \[
 A \rightarrow B \rightarrow C
 \]

- One could support chains in the algorithm but it is easier to extend the grammar, to get the **transitive closure**
 \[
 A \rightarrow B \\
 B \rightarrow C \\
 \Rightarrow \\
 A \rightarrow B \\
 B \rightarrow C \\
 \Rightarrow \\
 A \rightarrow C
 \]
Unary closure

- What if the grammar contained 2 rules:
 \[A \rightarrow B \]
 \[B \rightarrow C \]

- But C can be derived from A by a chain of rules:
 \[A \rightarrow B \rightarrow C \]

- One could support chains in the algorithm but it is easier to extend the grammar, to get the transitive closure

 \[
 \begin{align*}
 A & \rightarrow B \\
 B & \rightarrow C \\
 \end{align*}
 \Rightarrow
 \begin{align*}
 A & \rightarrow B \\
 B & \rightarrow C \\
 A & \rightarrow C \\
 \end{align*}
 \begin{align*}
 A & \rightarrow A \\
 B & \rightarrow B \\
 C & \rightarrow C \\
 \end{align*}

 Convenient for programming reasons in the PCFG case
Algorithm analysis

Time complexity?

for each max from 2 to n

 for each min from max - 2 down to 0

 for each syntactic category C

 for each binary rule C -> C₁ C₂

 for each mid from min + 1 to max - 1
Algorithm analysis

Time complexity?

\[
\text{for each max from 2 to } n \\
\quad \text{for each min from } \text{max} - 2 \text{ down to 0} \\
\quad \quad \text{for each syntactic category } C \\
\quad \quad \quad \text{for each binary rule } C \rightarrow C_1 C_2 \\
\quad \quad \quad \quad \text{for each mid from } \text{min} + 1 \text{ to } \text{max} - 1
\]

\(O(n^3|R|)\) where \(|R|\) is the number of rules in the grammar
Practical time complexity

\[\sim n^{3.6} \]
Probabilistic CKY
PCFGs

\[S \rightarrow NP \ VP \ 1.0 \]
\[VP \rightarrow V \ 0.2 \]
\[VP \rightarrow V \ NP \ 0.4 \]
\[VP \rightarrow VP \ PP \ 0.4 \]
\[NP \rightarrow NP \ PP \ 0.3 \]
\[NP \rightarrow D \ N \ 0.5 \]
\[NP \rightarrow PN \ 0.2 \]
\[PP \rightarrow P \ NF \ 1.0 \]

\[N \rightarrow girl \ 0.2 \]
\[N \rightarrow telescope \ 0.7 \]
\[N \rightarrow sandwich \ 0.1 \]
\[PN \rightarrow I \ 1.0 \]
\[V \rightarrow saw \ 0.5 \]
\[V \rightarrow ate \ 0.5 \]
\[P \rightarrow with \ 0.6 \]
\[P \rightarrow in \ 0.4 \]
\[D \rightarrow a \ 0.3 \]
\[D \rightarrow the \ 0.7 \]

\[p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times \]
\[0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7 \]
\[= 2.26 \times 10^{-5} \]
CKY with PCFGs

- Chart is represented by a 3d array of floats:
 \[\text{chart}[\text{min}][\text{max}][\text{label}] \]
 - It stores probabilities for the most probable subtree with a given signature

- \[\text{chart}[0][n][S] \] will store the probability of the most probable full parse tree
Intuition

For every C choose C_1, C_2 and mid such that

$$P(T_1) \times P(T_2) \times P(C \rightarrow C_1 C_2)$$

is maximal, where T_1 and T_2 are left and right subtrees.
for each \(w_i \) from left to right

for each preterminal rule \(C \rightarrow w_i \)

\[
\text{chart}[i-1][i][C] = \text{p}(C \rightarrow w_i)
\]
Implementation: binary rules

for each max from 2 to n

 for each min from max - 2 down to 0

 for each syntactic category C

 double best = undefined

 for each binary rule C -> C₁ C₂

 for each mid from min + 1 to max - 1

 double t₁ = chart[min][mid][C₁]

 double t₂ = chart[mid][max][C₂]

 double candidate = t₁ * t₂ * p(C -> C₁ C₂)

 if candidate > best then

 best = candidate

 chart[min][max][C] = best
Unary rules

- Similarly to CFGs: after producing scores for signatures (c, i, j), try to improve the scores by applying unary rules (and rule chains)
 - If improved, update the scores
Unary (reflexive transitive) closure

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>0.1</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>0.2</td>
</tr>
</tbody>
</table>

\Rightarrow

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>0.1</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>0.2</td>
</tr>
<tr>
<td>$A \rightarrow C$</td>
<td>0.2×0.1</td>
</tr>
<tr>
<td>$C \rightarrow C$</td>
<td>1</td>
</tr>
<tr>
<td>$A \rightarrow A$</td>
<td>1</td>
</tr>
<tr>
<td>$B \rightarrow B$</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that this is not a PCFG anymore as the rules do not sum to 1 for each parent.
Unary (reflexive transitive) closure

Note that this is not a PCFG anymore as the rules do not sum to 1 for each parent.

```
A → B  0.1
B → C  0.2

A → B  0.1
B → C  0.2
A → C  0.2 × 0.1

A → B
B → B
C → C
```

The fact that the rule is composite needs to be stored to recover the true tree.
Unary (reflexive transitive) closure

\[A \rightarrow B \quad 0.1 \quad \Rightarrow \quad A \rightarrow B \quad 0.1 \quad A \rightarrow A \quad 1 \]
\[B \rightarrow C \quad 0.2 \quad \Rightarrow \quad B \rightarrow C \quad 0.2 \quad B \rightarrow B \quad 1 \]
\[A \rightarrow C \quad 0.2 \times 0.1 \quad \Rightarrow \quad C \rightarrow C \quad 1 \]

Note that this is not a PCFG anymore as the rules do not sum to 1 for each parent.

What about loops, like: \(A \rightarrow B \rightarrow A \rightarrow C \)?
Recovery of the tree

- For each signature we store backpointers to the elements from which it was built (e.g., rule and, for binary rules, midpoint)
 - start recovering from [0, n, S]

- Be careful with unary rules
 - Basically you can assume that you always used an unary rule from the closure (but it could be the trivial one \(C \rightarrow C \))
Speeding up the algorithm (approximate search)

Any ideas?
Speeding up the algorithm

- Basic pruning (roughly):
 - For every span (i,j) store only labels which have the probability at most N times smaller than the probability of the most probable label for this span
 - Check not all rules but only rules yielding subtree labels having non-zero probability

- Coarse-to-fine pruning
 - Parse with a smaller (simpler) grammar, and precompute (posterior) probabilities for each spans, and use only the ones with non-negligible probability from the previous grammar
Intrinsic evaluation:
- **Automatic**: evaluate against annotation provided by human experts (gold standard) according to some predefined measure
- **Manual**: … according to human judgment

Extrinsic evaluation: score syntactic representation by comparing how well a system using this representation performs on some task
- E.g., use syntactic representation as input for a semantic analyzer and compare results of the analyzer using syntax predicted by different parsers.
Standard evaluation setting in parsing

- Automatic intrinsic evaluation is used: parsers are evaluated against gold standard by provided by linguists
 - There is a standard split into the parts:
 - training set: used for estimation of model parameters
 - development set: used for tuning the model (initial experiments)
 - test set: final experiments to compare against previous work
Automatic evaluation of constituent parsers

- **Exact match**: percentage of trees predicted correctly
- **Bracket score**: scores how well individual phrases (and their boundaries) are identified
- **Crossing brackets**: percentage of phrases boundaries crossing

The most standard measure; we will focus on it
Brackets scores

- The most standard score is **bracket score**
- It regards a tree as a collection of brackets: \([min, max, C]\)
- The set of brackets predicted by a parser is compared against the set of brackets in the tree annotated by a linguist
- **Precision, recall and F1** are used as scores
Preview: F1 bracket score