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Ambiguity

▪ I saw a girl with a telescope



Parsing

▪ INPUT: 
▪ The move followed a round of similar increases by other 

lenders, reflecting a continuing decline in that market

▪ OUTPUT:



A Supervised ML Problem

Canadian Utilities had 1988 revenue of $ 1.16 billion , mainly from its natural gas and 

electric utility businesses in Alberta , where the company serves about 800,000 customers .

▪ Data for parsing experiments: 
▪ Penn WSJ Treebank = 50,000 sentences with associated 

trees
▪ Usual set-up: 40,000 training, 2,400 test 

[from Michael Collins slides]



Outline

▪ Syntax: intro, CFGs, PCFGs
▪ CFGs: Parsing
▪ PCFGs: Parsing
▪ Parsing evaluation



Syntax



Syntax

▪ The study of the patterns of formation of sentences and 
phrases from word

▪ my dog Pron N
▪ the dog Det N
▪ the cat Det N

▪ the large cat Det Adj N
▪ the black cat Det Adj N

▪ ate a sausage V Det N



Syntax

▪ The study of the patterns of formation of sentences and 
phrases from word
▪ Borders with semantics and morphology sometimes blurred

Afyonkarahisarlılaştırabildiklerimizdenmişsinizcesinee 

in Turkish means 

"as if you are one of the people that we thought to be originating from 
Afyonkarahisar" [wikipedia]



Parsing

▪ The process of predicting syntactic representations
▪ Syntactic Representations
▪ Different types of syntactic representations are possible, for 

example:

Constuent (a.k.a. phrase-structure) tree



Constituent trees

▪ Internal nodes correspond to phrases
▪ S – a sentence
▪ NP (Noun Phrase):    My dog,  a sandwich,  lakes,..

▪ VP (Verb Phrase):   ate a sausage, barked, …
▪ PP (Prepositional phrases):  with a friend,  in a 

car, …

▪ Nodes immediately above words are PoS tags (aka preterminals)
▪ PN – pronoun
▪ D – determiner
▪ V – verb
▪ N – noun
▪ P – preposition



Bracketing notation

▪ It is often convenient to represent a tree as a bracketed 
sequence

(S  

        (NP  (PN My) (N Dog) )

        (VP  (V ate) 

                (NP (D a )  (N sausage) )

        )

   )



Parsing

▪ The process of predicting syntactic representations
▪ Syntactic Representations
▪ Different types of syntactic representations are possible, for 

example:

Constuent (a.k.a. phrase-structure) tree Dependency tree



Dependency trees

▪ Nodes are words (along with PoS tags)
▪ Directed arcs encode syntactic dependencies between them
▪ Labels are types of relations between the words

▪ poss – possesive
▪ dobj – direct object
▪ nsub - subject
▪ det - determiner

root My 
PN

dog 
N

ate 
V

a 
D

sausage 
     N

root

poss nsubj

dobj

det



Recovering shallow semantics

▪ Some semantic information can be (approximately) derived 
from syntactic information
▪ Subjects (nsubj) are (often) agents ("initiator / doers for an action")   
▪ Direct objects (dobj) are  (often) patients ("affected entities")

root My 
PN

dog 
N

ate 
V

a 
D

sausage 
     N

root

poss nsubj

dobj

det



Recovering shallow semantics

▪ Some semantic information can be (approximately) derived from 
syntactic information
▪ Subjects (nsubj) are (often) agents ("initiator / doers for an action")   
▪ Direct objects (dobj) are  (often) patients ("affected entities")

▪ But even for agents and patients consider:
▪ Mary is baking a cake in the oven                                           
▪ A cake is baking in the oven

▪ In general it is not trivial even for the most shallow forms of semantics
▪ E.g., consider prepositions: in can encode direction, position, temporal 

information, …

root My 
PN

dog 
N

ate 
V

a 
D

sausage 
     N

root

poss nsubj

dobj

det



Constituent and dependency representations

▪ Constituent trees can (potentially) be converted to 
dependency trees

▪ Dependency trees can (potentially) be converted to 
constituent trees 



Constituent trees

▪ Internal nodes correspond to phrases
▪ S – a sentence
▪ NP (Noun Phrase):    My dog,  a sandwich,  lakes,..

▪ VP (Verb Phrase):   ate a sausage, barked, …
▪ PP (Prepositional phrases):  with a friend,  in a 

car, …

▪ Nodes immediately above words are PoS tags (aka preterminals)
▪ PN – pronoun
▪ D – determiner
▪ V – verb
▪ N – noun
▪ P – preposition



Constituency Tests

▪ How do we know what nodes go in the tree?

▪ Classic constituency tests:
▪ Substitution by proform
▪ Movement
▪ Clefting
▪ Preposing 
▪ Passive

▪ Modification
▪ Coordination/Conjunction
▪ Ellipsis/Deletion



Conflicting Tests

▪ Constituency isn’t always clear
▪ Units of transfer:

▪ think about ~ penser à

▪ talk about ~ hablar de

▪ Phonological reduction:
▪ I will go → I’ll go

▪ I want to go → I wanna go

▪ a le centre → au centre La   vélocité  des ondes sismiques



CFGs



Context Free Grammar (CFG)

▪ Other grammar formalisms: LFG, HPSG, TAG, CCG…
 

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP



Treebank Sentences



CFGs



CFGs



CFGs



CFGs



CFGs



CFGs
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CFGs



Context-Free Grammars

▪ A context-free grammar is a 4-tuple <N, T, S, R>
▪ N : the set of non-terminals

▪ Phrasal categories: S, NP, VP, ADJP, etc.

▪ Parts-of-speech (pre-terminals): NN, JJ, DT, VB

▪ T : the set of terminals (the words)

▪ S : the start symbol
▪ Often written as ROOT or TOP

▪ Not usually the sentence non-terminal S

▪ R : the set of rules
▪ Of the form X → Y

1
 Y

2
 … Y

k
, with X, Y

i
 ∈ N

▪ Examples: S → NP VP,   VP → VP CC VP

▪ Also called rewrites, productions, or local trees



An example grammar

(NP  A girl)  (VP ate a sandwich)  

(V  ate)  (NP a sandwich)  
(VP  saw a girl)  (PP with a telescope)  

(NP  a girl)  (PP with a sandwich)  

(P  with)  (NP with a sandwich)  

  (D a) (N sandwich)

Preterminal rules
Called Inner rules



Why context-free?

What can be a sub-tree is only affected by what the 
phrase type is (VP) but not the context



Why context-free?

What can be a sub-tree is only affected by what the 
phrase type is (VP) but not the context

Not grammatical



Coordination ambiguity

▪ Here, the coarse VP and NP categories cannot enforce 
subject-verb agreement in number resulting in the 
coordination ambiguity

This tree would be ruled out if the context would 
be somehow captured (subject-verb agreement)

"Bark" can refer both  to a noun or a 
verb

Coordination



Ambiguities



Why parsing is hard?   Ambiguity

▪ Prepositional phrase attachment ambiguity



PP Ambiguity

Put the block in the box on the table in the kitchen

 

▪ 3 prepositional phrases, 5 interpretations:
▪ Put the block ((in the box on the table) in the kitchen) 

▪ Put the block (in the box (on the table in the kitchen)) 

▪ Put ((the block in the box) on the table) in the kitchen. 

▪ Put (the block (in the box on the table)) in the kitchen. 

▪ Put  (the block in the box) (on the table in the kitchen)



PP Ambiguity

Put the block in the box on the table in the kitchen

▪ 3 prepositional phrases, 5 interpretations:
▪ Put the block ((in the box on the table) in the kitchen) 

▪ Put the block (in the box (on the table in the kitchen)) 

▪ Put ((the block in the box) on the table) in the kitchen. 

▪ Put (the block (in the box on the table)) in the kitchen. 

▪ Put  (the block in the box) (on the table in the kitchen)

▪ A general case:
Catalan numbers



A typical tree from a standard dataset (Penn treebank WSJ)

Canadian Utilities had 1988 revenue of $ 1.16 billion , mainly from its natural gas and 

electric utility businesses in Alberta , where the company serves about 800,000 customers .

[from Michael Collins slides]



Syntactic Ambiguities I

▪ Prepositional phrases:
They cooked the beans in the pot on the stove with handles. 

▪ Particle vs. preposition:
The puppy tore up the staircase. 

▪ Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand. 

▪ Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers. 



Syntactic Ambiguities II

▪ Modifier scope within NPs
impractical design requirements
plastic cup holder 

▪ Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue. 

▪ Coordination scope:
Small rats and mice can squeeze into holes or cracks in the wall. 



Dark Ambiguities

▪ Dark ambiguities: most analyses are shockingly bad (meaning, they don’t have 
an interpretation you can get your mind around)

▪ Unknown words and new usages
▪ Solution: We need mechanisms to focus attention on the best ones, probabilistic 

techniques do this

This analysis corresponds to the correct 
parse of 

“This is panic buying ! ”



How to Deal with Ambiguity?

▪ We want to score all the derivations to encode how plausible 
they are

 Put the block in the box on the table in the kitchen



PCFGs



Probabilistic Context-Free Grammars

▪ A context-free grammar is a tuple <N, T, S, R>
▪ N : the set of non-terminals

▪ Phrasal categories: S, NP, VP, ADJP, etc.

▪ Parts-of-speech (pre-terminals): NN, JJ, DT, VB

▪ T : the set of terminals (the words)

▪ S : the start symbol
▪ Often written as ROOT or TOP

▪ Not usually the sentence non-terminal S

▪ R : the set of rules
▪ Of the form X → Y

1
 Y

2
 … Y

k
, with X, Y

i
 ∈ N

▪ Examples: S → NP VP,   VP → VP CC VP

▪ Also called rewrites, productions, or local trees

▪ A PCFG adds:
▪ A top-down production probability per rule P(Y

1
 Y

2
 … Y

k 
| X)



PCFGs

(NP  A girl)  (VP ate a sandwich)  

(VP  ate)  (NP a sandwich)  
(VP  saw a girl)  (PP with …)  

(NP  a girl)  (PP with ….)  

(P  with)  (NP with a sandwich)  

  (D a) (N sandwich)

1.0

   

    

Associate probabilities with the rules :           
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Now we can score a tree as a 
product of probabilities 
corresponding to the used rules



PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFGs
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PCFG Estimation



ML estimation

▪ A treebank: a collection sentences annotated with constituent 
trees

▪ An estimated probability of a rule (maximum likelihood 
estimates)

▪ Smoothing is helpful
▪ Especially important for preterminal rules

The number of times the rule used in the 
corpus

The number of times the nonterminal X 
appears in the treebank 



Distribution over trees

▪ We defined a distribution over production rules for each 
nonterminal

▪ Our goal was to define a distribution over parse trees

▪ Good news:  any PCFG estimated with the maximum 
likelihood procedure are always proper (Chi and Geman, 98)

Unfortunately, not all PCFGs give rise to a proper distribution over trees, i.e. the sum 
over probabilities of all trees the grammar can generate may be less than 1:



Penn Treebank: peculiarities

▪ Wall street journal:  around 40, 000 annotated sentences,  
1,000,000 words 
▪ Fine-grained part of speech tags (45),  e.g.,  for verbs

▪ Flat NPs  (no attempt to disambiguate NP attachment)

VBD  Verb, past tense
VBG Verb, gerund or present participle
VBP Verb, present (non-3rd person singular)
VBZ Verb, present (3rd person singular)
MD Modal



CKY Parsing



Parsing

▪ Parsing is search through the space of all possible parses
▪ e.g., we may want either any parse, all parses or the highest scoring 

parse (if PCFG):

▪ Bottom-up:
▪ One starts from words and attempt to construct the full tree

▪ Top-down
▪ Start from the start symbol and attempt to expand to get the 

sentence

arg max P (T )
T ∈G(x)



CKY algorithm (aka CYK)

▪ Cocke-Kasami-Younger algorithm
▪ Independently discovered in late 60s / early 70s

▪ An efficient bottom up parsing algorithm for (P)CFGs 
▪ can be used both for the recognition and parsing problems
▪ Very important in NLP (and beyond)

▪ We will start with the non-probabilistic version



Constraints on the grammar

▪ The basic CKY algorithm supports only rules in the Chomsky 
Normal Form (CNF):

Unary preterminal rules (generation of words given PoS tags)

Binary inner rules



Constraints on the grammar

▪ The basic CKY algorithm supports only rules in the Chomsky 
Normal Form (CNF):

▪ Any CFG can be converted to an equivalent CNF
▪ Equivalent means that they define the same language
▪ However (syntactic) trees will look differently
▪ It is possible to address it by defining such transformations that 

allows for easy reverse transformation



Transformation to CNF form

▪ What one need to do to convert to CNF form

▪ Get rid of unary rules:   
▪ Get rid of N-ary rules: 

Not a problem, as our 
CKY algorithm will 
support unary rules

Crucial to process them, as 
required for efficient parsing



Transformation to CNF form: binarization

▪ Consider 

▪ How do we get a set of binary rules which are equivalent?



Transformation to CNF form: binarization

▪ Consider 

▪ How do we get a set of binary rules which are equivalent?



Transformation to CNF form: binarization

▪ Consider 

▪ How do we get a set of binary rules which are equivalent?

▪ A more systematic way to refer to new non-terminals



Transformation to CNF form: binarization

▪ Instead of binarizing tuples we can binarize trees on 
preprocessing:

Can be easily reversed 
on postprocessing 

Also known as lossless 
Markovization in the 
context of PCFGs



CKY: Parsing task

▪ We a given 
▪ a grammar <N, T, S, R>
▪ a sequence of words

▪ Our goal is to produce a parse tree for w  



CKY: Parsing task

▪ We a given 
▪ a grammar <N, T, S, R>
▪ a sequence of words

▪ Our goal is to produce a parse tree for w 
▪ We need an easy way to refer to substrings of w 

71

indices refer to fenceposts

span (i, j)  refers to words between fenceposts i and j 



Parsing one word



Parsing one word



Parsing one word



Parsing longer spans

Check through all
C1, C2, mid



Parsing longer spans

Check through all
C1, C2, mid



Parsing longer spans



CKY in action
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Chart (aka 
parsing 
triangle)



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es



P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

Check about 
unary rules
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Check about 
unary rules: no 
unary rules 
here
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CKY in action
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Apparently the sentence is ambiguous for the grammar:  (as the grammar 
overgenerates)



Ambiguity

▪

No subject-verb agreement, and 
poison used as an intransitive verb 



CKY more formally
Chart can be represented by a Boolean 3D array chart[min][max][label]
▶ Relevant entries have  

                                                            if the signature (min, max, C) is already added  to the chart; 
                 otherwise.

Here we assume that 
labels (C) are integer 
indices



Implementation: preterminal rules



Implementation: binary rules

max

min





Unary rules

▪ How to integrate unary rules C→C
1
 ? 



Unary rules

▪ How to integrate unary rules C→C
1
 ? 



Unary rules

▪ How to integrate unary rules C→C
1
 ? 

But we forgot something!



Unary closure

▪ What if the grammar contained 2 rules:  
 

▪ But C can be derived from  A by a chain of rules:           

▪ One could support chains in the algorithm but it is easier to 
extend the grammar, to get the transitive closure



Unary closure

▪ What if the grammar contained 2 rules:  
 

▪ But C can be derived from  A by a chain of rules:           

▪ One could support chains in the algorithm but it is easier to 
extend the grammar, to get the transitive closure

Convenient for 
programming 
reasons in the PCFG 
case



Algorithm analysis

Time complexity?



Algorithm analysis

Time complexity?

O(n3|R|) where |R| is  is the number of rules in the grammar



Practical time complexity



Probabilistic CKY
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CKY with PCFGs

▪ Chart is represented by a 3d array of floats       
chart[min][max][label]
▪ It stores probabilities for the most probable subtree with a given 

signature

▪ chart[0][n][S] will store the probability of the most 
probable full parse tree           

▪



Intuition

For every   C choose  C
1 

, C
2
   and mid such that    

is maximal, where    T
1
  and  T

2
     are left and right 

subtrees.

     



Implementation: preterminal rules



Implementation: binary rules



Unary rules

▪ Similarly to CFGs:  after producing scores for signatures (c, i, j), 
try to improve the scores by applying unary rules (and rule 
chains)
▪ If improved,  update the scores   



Unary (reflexive transitive) closure

Note that this is not a PCFG anymore as the rules do not sum 
to 1 for each parent



Unary (reflexive transitive) closure

Note that this is not a PCFG anymore as the rules do not sum 
to 1 for each parent

The fact that the rule is composite needs to be 
stored to recover the true tree



Unary (reflexive transitive) closure

Note that this is not a PCFG anymore as the rules do not sum 
to 1 for each parent

The fact that the rule is composite needs to be 
stored to recover the true tree

What about loops, like:                                             ? 



Recovery of the tree

▪ For each signature we store backpointers to the elements 
from which it was built (e.g., rule and, for binary rules, 
midpoint)
▪ start recovering from [0, n, S]

▪ Be careful with unary rules 
▪ Basically you can assume that you always used an unary rule from 

the closure (but it could be the trivial one   C → C   ) 



Speeding up the algorithm (approximate 
search)

Any ideas?



Speeding up the algorithm

▪ Basic pruning (roughly):
▪ For every span (i,j) store only labels which have the probability at 

most N times smaller than the probability of the most probable 
label for this span

▪ Check not all rules but only rules yielding subtree labels having 
non-zero probability

▪ Coarse-to-fine pruning
▪ Parse with a smaller (simpler) grammar, and precompute (posterior) 

probabilities for each spans, and use only the ones with 
non-negligible probability from the previous grammar



Parsing evaluation

▪ Intrinsic evaluation:
▪ Automatic: evaluate against annotation provided by human experts 

(gold standard) according to some predefined measure
▪ Manual:  … according to human judgment

▪ Extrinsic evaluation: score syntactic representation by 
comparing how well a system using this representation 
performs on some task
▪ E.g.,  use syntactic representation as input for a semantic analyzer 

and compare results of the analyzer using syntax predicted by 
different parsers.



Standard evaluation setting in parsing

▪ Automatic intrinsic evaluation is used:  parsers are evaluated 
against gold standard by provided by linguists
▪ There is a standard split into the parts:
▪ training set:  used for estimation of model parameters
▪ development set: used for tuning the model (initial experiments)
▪ test set: final experiments to compare against previous work



Automatic evaluation of constituent parsers

▪ Exact match:  percentage of trees predicted correctly
▪ Bracket score:  scores how well individual phrases (and their 

boundaries) are identified
▪ Crossing brackets: percentage of phrases boundaries crossing

The most standard measure;  
we will focus on it



Brackets scores

▪ The most standard score is bracket score
▪ It regards a tree as a collection of brackets: 
▪ The set of brackets predicted by a parser is compared against 

the set of brackets in the tree annotated by a linguist
▪ Precision, recall and F1 are used as scores

Subtree signatures for 
CKY



Preview: F1 bracket score


