
Parsing I

Yulia Tsvetkov – CMU

Slides: Ivan Titov – University of Edinburgh,
 Taylor Berg-Kirkpatrick – CMU/UCSD, Dan Klein – UC Berkeley

Algorithms for NLP

Ambiguity

▪ I saw a girl with a telescope

Parsing

▪ INPUT:
▪ The move followed a round of similar increases by other

lenders, reflecting a continuing decline in that market

▪ OUTPUT:

A Supervised ML Problem

Canadian Utilities had 1988 revenue of $ 1.16 billion , mainly from its natural gas and

electric utility businesses in Alberta , where the company serves about 800,000 customers .

▪ Data for parsing experiments:
▪ Penn WSJ Treebank = 50,000 sentences with associated

trees
▪ Usual set-up: 40,000 training, 2,400 test

[from Michael Collins slides]

Outline

▪ Syntax: intro, CFGs, PCFGs
▪ CFGs: Parsing
▪ PCFGs: Parsing
▪ Parsing evaluation

Syntax

Syntax

▪ The study of the patterns of formation of sentences and
phrases from word

▪ my dog Pron N
▪ the dog Det N
▪ the cat Det N

▪ the large cat Det Adj N
▪ the black cat Det Adj N

▪ ate a sausage V Det N

Syntax

▪ The study of the patterns of formation of sentences and
phrases from word
▪ Borders with semantics and morphology sometimes blurred

Afyonkarahisarlılaştırabildiklerimizdenmişsinizcesinee

in Turkish means

"as if you are one of the people that we thought to be originating from
Afyonkarahisar" [wikipedia]

Parsing

▪ The process of predicting syntactic representations
▪ Syntactic Representations
▪ Different types of syntactic representations are possible, for

example:

Constuent (a.k.a. phrase-structure) tree

Constituent trees

▪ Internal nodes correspond to phrases
▪ S – a sentence
▪ NP (Noun Phrase): My dog, a sandwich, lakes,..

▪ VP (Verb Phrase): ate a sausage, barked, …
▪ PP (Prepositional phrases): with a friend, in a

car, …

▪ Nodes immediately above words are PoS tags (aka preterminals)
▪ PN – pronoun
▪ D – determiner
▪ V – verb
▪ N – noun
▪ P – preposition

Bracketing notation

▪ It is often convenient to represent a tree as a bracketed
sequence

(S

 (NP (PN My) (N Dog))

 (VP (V ate)

 (NP (D a) (N sausage))

)

)

Parsing

▪ The process of predicting syntactic representations
▪ Syntactic Representations
▪ Different types of syntactic representations are possible, for

example:

Constuent (a.k.a. phrase-structure) tree Dependency tree

Dependency trees

▪ Nodes are words (along with PoS tags)
▪ Directed arcs encode syntactic dependencies between them
▪ Labels are types of relations between the words

▪ poss – possesive
▪ dobj – direct object
▪ nsub - subject
▪ det - determiner

root My
PN

dog
N

ate
V

a
D

sausage
 N

root

poss nsubj

dobj

det

Recovering shallow semantics

▪ Some semantic information can be (approximately) derived
from syntactic information
▪ Subjects (nsubj) are (often) agents ("initiator / doers for an action")
▪ Direct objects (dobj) are (often) patients ("affected entities")

root My
PN

dog
N

ate
V

a
D

sausage
 N

root

poss nsubj

dobj

det

Recovering shallow semantics

▪ Some semantic information can be (approximately) derived from
syntactic information
▪ Subjects (nsubj) are (often) agents ("initiator / doers for an action")
▪ Direct objects (dobj) are (often) patients ("affected entities")

▪ But even for agents and patients consider:
▪ Mary is baking a cake in the oven
▪ A cake is baking in the oven

▪ In general it is not trivial even for the most shallow forms of semantics
▪ E.g., consider prepositions: in can encode direction, position, temporal

information, …

root My
PN

dog
N

ate
V

a
D

sausage
 N

root

poss nsubj

dobj

det

Constituent and dependency representations

▪ Constituent trees can (potentially) be converted to
dependency trees

▪ Dependency trees can (potentially) be converted to
constituent trees

Constituent trees

▪ Internal nodes correspond to phrases
▪ S – a sentence
▪ NP (Noun Phrase): My dog, a sandwich, lakes,..

▪ VP (Verb Phrase): ate a sausage, barked, …
▪ PP (Prepositional phrases): with a friend, in a

car, …

▪ Nodes immediately above words are PoS tags (aka preterminals)
▪ PN – pronoun
▪ D – determiner
▪ V – verb
▪ N – noun
▪ P – preposition

Constituency Tests

▪ How do we know what nodes go in the tree?

▪ Classic constituency tests:
▪ Substitution by proform
▪ Movement
▪ Clefting
▪ Preposing
▪ Passive

▪ Modification
▪ Coordination/Conjunction
▪ Ellipsis/Deletion

Conflicting Tests

▪ Constituency isn’t always clear
▪ Units of transfer:

▪ think about ~ penser à

▪ talk about ~ hablar de

▪ Phonological reduction:
▪ I will go → I’ll go

▪ I want to go → I wanna go

▪ a le centre → au centre La vélocité des ondes sismiques

CFGs

Context Free Grammar (CFG)

▪ Other grammar formalisms: LFG, HPSG, TAG, CCG…

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP

Treebank Sentences

CFGs

CFGs

CFGs

CFGs

CFGs

CFGs

CFGs

CFGs

Context-Free Grammars

▪ A context-free grammar is a 4-tuple <N, T, S, R>
▪ N : the set of non-terminals

▪ Phrasal categories: S, NP, VP, ADJP, etc.

▪ Parts-of-speech (pre-terminals): NN, JJ, DT, VB

▪ T : the set of terminals (the words)

▪ S : the start symbol
▪ Often written as ROOT or TOP

▪ Not usually the sentence non-terminal S

▪ R : the set of rules
▪ Of the form X → Y

1
 Y

2
 … Y

k
, with X, Y

i
 ∈ N

▪ Examples: S → NP VP, VP → VP CC VP

▪ Also called rewrites, productions, or local trees

An example grammar

(NP A girl) (VP ate a sandwich)

(V ate) (NP a sandwich)
(VP saw a girl) (PP with a telescope)

(NP a girl) (PP with a sandwich)

(P with) (NP with a sandwich)

 (D a) (N sandwich)

Preterminal rules
Called Inner rules

Why context-free?

What can be a sub-tree is only affected by what the
phrase type is (VP) but not the context

Why context-free?

What can be a sub-tree is only affected by what the
phrase type is (VP) but not the context

Not grammatical

Coordination ambiguity

▪ Here, the coarse VP and NP categories cannot enforce
subject-verb agreement in number resulting in the
coordination ambiguity

This tree would be ruled out if the context would
be somehow captured (subject-verb agreement)

"Bark" can refer both to a noun or a
verb

Coordination

Ambiguities

Why parsing is hard? Ambiguity

▪ Prepositional phrase attachment ambiguity

PP Ambiguity

Put the block in the box on the table in the kitchen

▪ 3 prepositional phrases, 5 interpretations:
▪ Put the block ((in the box on the table) in the kitchen)

▪ Put the block (in the box (on the table in the kitchen))

▪ Put ((the block in the box) on the table) in the kitchen.

▪ Put (the block (in the box on the table)) in the kitchen.

▪ Put (the block in the box) (on the table in the kitchen)

PP Ambiguity

Put the block in the box on the table in the kitchen

▪ 3 prepositional phrases, 5 interpretations:
▪ Put the block ((in the box on the table) in the kitchen)

▪ Put the block (in the box (on the table in the kitchen))

▪ Put ((the block in the box) on the table) in the kitchen.

▪ Put (the block (in the box on the table)) in the kitchen.

▪ Put (the block in the box) (on the table in the kitchen)

▪ A general case:
Catalan numbers

A typical tree from a standard dataset (Penn treebank WSJ)

Canadian Utilities had 1988 revenue of $ 1.16 billion , mainly from its natural gas and

electric utility businesses in Alberta , where the company serves about 800,000 customers .

[from Michael Collins slides]

Syntactic Ambiguities I

▪ Prepositional phrases:
They cooked the beans in the pot on the stove with handles.

▪ Particle vs. preposition:
The puppy tore up the staircase.

▪ Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

▪ Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities II

▪ Modifier scope within NPs
impractical design requirements
plastic cup holder

▪ Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

▪ Coordination scope:
Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

▪ Dark ambiguities: most analyses are shockingly bad (meaning, they don’t have
an interpretation you can get your mind around)

▪ Unknown words and new usages
▪ Solution: We need mechanisms to focus attention on the best ones, probabilistic

techniques do this

This analysis corresponds to the correct
parse of

“This is panic buying ! ”

How to Deal with Ambiguity?

▪ We want to score all the derivations to encode how plausible
they are

 Put the block in the box on the table in the kitchen

PCFGs

Probabilistic Context-Free Grammars

▪ A context-free grammar is a tuple <N, T, S, R>
▪ N : the set of non-terminals

▪ Phrasal categories: S, NP, VP, ADJP, etc.

▪ Parts-of-speech (pre-terminals): NN, JJ, DT, VB

▪ T : the set of terminals (the words)

▪ S : the start symbol
▪ Often written as ROOT or TOP

▪ Not usually the sentence non-terminal S

▪ R : the set of rules
▪ Of the form X → Y

1
 Y

2
 … Y

k
, with X, Y

i
 ∈ N

▪ Examples: S → NP VP, VP → VP CC VP

▪ Also called rewrites, productions, or local trees

▪ A PCFG adds:
▪ A top-down production probability per rule P(Y

1
 Y

2
 … Y

k
| X)

PCFGs

(NP A girl) (VP ate a sandwich)

(VP ate) (NP a sandwich)
(VP saw a girl) (PP with …)

(NP a girl) (PP with ….)

(P with) (NP with a sandwich)

 (D a) (N sandwich)

1.0

Associate probabilities with the rules :

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

Now we can score a tree as a
product of probabilities
corresponding to the used rules

PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

PCFGs

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

PCFG Estimation

ML estimation

▪ A treebank: a collection sentences annotated with constituent
trees

▪ An estimated probability of a rule (maximum likelihood
estimates)

▪ Smoothing is helpful
▪ Especially important for preterminal rules

The number of times the rule used in the
corpus

The number of times the nonterminal X
appears in the treebank

Distribution over trees

▪ We defined a distribution over production rules for each
nonterminal

▪ Our goal was to define a distribution over parse trees

▪ Good news: any PCFG estimated with the maximum
likelihood procedure are always proper (Chi and Geman, 98)

Unfortunately, not all PCFGs give rise to a proper distribution over trees, i.e. the sum
over probabilities of all trees the grammar can generate may be less than 1:

Penn Treebank: peculiarities

▪ Wall street journal: around 40, 000 annotated sentences,
1,000,000 words
▪ Fine-grained part of speech tags (45), e.g., for verbs

▪ Flat NPs (no attempt to disambiguate NP attachment)

VBD Verb, past tense
VBG Verb, gerund or present participle
VBP Verb, present (non-3rd person singular)
VBZ Verb, present (3rd person singular)
MD Modal

CKY Parsing

Parsing

▪ Parsing is search through the space of all possible parses
▪ e.g., we may want either any parse, all parses or the highest scoring

parse (if PCFG):

▪ Bottom-up:
▪ One starts from words and attempt to construct the full tree

▪ Top-down
▪ Start from the start symbol and attempt to expand to get the

sentence

arg max P (T)
T ∈G(x)

CKY algorithm (aka CYK)

▪ Cocke-Kasami-Younger algorithm
▪ Independently discovered in late 60s / early 70s

▪ An efficient bottom up parsing algorithm for (P)CFGs
▪ can be used both for the recognition and parsing problems
▪ Very important in NLP (and beyond)

▪ We will start with the non-probabilistic version

Constraints on the grammar

▪ The basic CKY algorithm supports only rules in the Chomsky
Normal Form (CNF):

Unary preterminal rules (generation of words given PoS tags)

Binary inner rules

Constraints on the grammar

▪ The basic CKY algorithm supports only rules in the Chomsky
Normal Form (CNF):

▪ Any CFG can be converted to an equivalent CNF
▪ Equivalent means that they define the same language
▪ However (syntactic) trees will look differently
▪ It is possible to address it by defining such transformations that

allows for easy reverse transformation

Transformation to CNF form

▪ What one need to do to convert to CNF form

▪ Get rid of unary rules:
▪ Get rid of N-ary rules:

Not a problem, as our
CKY algorithm will
support unary rules

Crucial to process them, as
required for efficient parsing

Transformation to CNF form: binarization

▪ Consider

▪ How do we get a set of binary rules which are equivalent?

Transformation to CNF form: binarization

▪ Consider

▪ How do we get a set of binary rules which are equivalent?

Transformation to CNF form: binarization

▪ Consider

▪ How do we get a set of binary rules which are equivalent?

▪ A more systematic way to refer to new non-terminals

Transformation to CNF form: binarization

▪ Instead of binarizing tuples we can binarize trees on
preprocessing:

Can be easily reversed
on postprocessing

Also known as lossless
Markovization in the
context of PCFGs

CKY: Parsing task

▪ We a given
▪ a grammar <N, T, S, R>
▪ a sequence of words

▪ Our goal is to produce a parse tree for w

CKY: Parsing task

▪ We a given
▪ a grammar <N, T, S, R>
▪ a sequence of words

▪ Our goal is to produce a parse tree for w
▪ We need an easy way to refer to substrings of w

71

indices refer to fenceposts

span (i, j) refers to words between fenceposts i and j

Parsing one word

Parsing one word

Parsing one word

Parsing longer spans

Check through all
C1, C2, mid

Parsing longer spans

Check through all
C1, C2, mid

Parsing longer spans

CKY in action

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

Chart (aka
parsing
triangle)

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

Check about
unary rules

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

Check about
unary rules: no
unary rules
here

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

CKY in action

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

Check about
unary rules: no
unary rules
here

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

mid=1

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

mid=2

P
re

te
rm

in
al

 ru
le

s
In

ne
r r

ul
es

Apparently the sentence is ambiguous for the grammar: (as the grammar
overgenerates)

Ambiguity

▪

No subject-verb agreement, and
poison used as an intransitive verb

CKY more formally
Chart can be represented by a Boolean 3D array chart[min][max][label]
▶ Relevant entries have

 if the signature (min, max, C) is already added to the chart;
 otherwise.

Here we assume that
labels (C) are integer
indices

Implementation: preterminal rules

Implementation: binary rules

max

min

Unary rules

▪ How to integrate unary rules C→C
1
 ?

Unary rules

▪ How to integrate unary rules C→C
1
 ?

Unary rules

▪ How to integrate unary rules C→C
1
 ?

But we forgot something!

Unary closure

▪ What if the grammar contained 2 rules:

▪ But C can be derived from A by a chain of rules:

▪ One could support chains in the algorithm but it is easier to
extend the grammar, to get the transitive closure

Unary closure

▪ What if the grammar contained 2 rules:

▪ But C can be derived from A by a chain of rules:

▪ One could support chains in the algorithm but it is easier to
extend the grammar, to get the transitive closure

Convenient for
programming
reasons in the PCFG
case

Algorithm analysis

Time complexity?

Algorithm analysis

Time complexity?

O(n3|R|) where |R| is is the number of rules in the grammar

Practical time complexity

Probabilistic CKY

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

PCFGs

116

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

CKY with PCFGs

▪ Chart is represented by a 3d array of floats
chart[min][max][label]
▪ It stores probabilities for the most probable subtree with a given

signature

▪ chart[0][n][S] will store the probability of the most
probable full parse tree

▪

Intuition

For every C choose C
1

, C
2
 and mid such that

is maximal, where T
1
 and T

2
 are left and right

subtrees.

Implementation: preterminal rules

Implementation: binary rules

Unary rules

▪ Similarly to CFGs: after producing scores for signatures (c, i, j),
try to improve the scores by applying unary rules (and rule
chains)
▪ If improved, update the scores

Unary (reflexive transitive) closure

Note that this is not a PCFG anymore as the rules do not sum
to 1 for each parent

Unary (reflexive transitive) closure

Note that this is not a PCFG anymore as the rules do not sum
to 1 for each parent

The fact that the rule is composite needs to be
stored to recover the true tree

Unary (reflexive transitive) closure

Note that this is not a PCFG anymore as the rules do not sum
to 1 for each parent

The fact that the rule is composite needs to be
stored to recover the true tree

What about loops, like: ?

Recovery of the tree

▪ For each signature we store backpointers to the elements
from which it was built (e.g., rule and, for binary rules,
midpoint)
▪ start recovering from [0, n, S]

▪ Be careful with unary rules
▪ Basically you can assume that you always used an unary rule from

the closure (but it could be the trivial one C → C)

Speeding up the algorithm (approximate
search)

Any ideas?

Speeding up the algorithm

▪ Basic pruning (roughly):
▪ For every span (i,j) store only labels which have the probability at

most N times smaller than the probability of the most probable
label for this span

▪ Check not all rules but only rules yielding subtree labels having
non-zero probability

▪ Coarse-to-fine pruning
▪ Parse with a smaller (simpler) grammar, and precompute (posterior)

probabilities for each spans, and use only the ones with
non-negligible probability from the previous grammar

Parsing evaluation

▪ Intrinsic evaluation:
▪ Automatic: evaluate against annotation provided by human experts

(gold standard) according to some predefined measure
▪ Manual: … according to human judgment

▪ Extrinsic evaluation: score syntactic representation by
comparing how well a system using this representation
performs on some task
▪ E.g., use syntactic representation as input for a semantic analyzer

and compare results of the analyzer using syntax predicted by
different parsers.

Standard evaluation setting in parsing

▪ Automatic intrinsic evaluation is used: parsers are evaluated
against gold standard by provided by linguists
▪ There is a standard split into the parts:
▪ training set: used for estimation of model parameters
▪ development set: used for tuning the model (initial experiments)
▪ test set: final experiments to compare against previous work

Automatic evaluation of constituent parsers

▪ Exact match: percentage of trees predicted correctly
▪ Bracket score: scores how well individual phrases (and their

boundaries) are identified
▪ Crossing brackets: percentage of phrases boundaries crossing

The most standard measure;
we will focus on it

Brackets scores

▪ The most standard score is bracket score
▪ It regards a tree as a collection of brackets:
▪ The set of brackets predicted by a parser is compared against

the set of brackets in the tree annotated by a linguist
▪ Precision, recall and F1 are used as scores

Subtree signatures for
CKY

Preview: F1 bracket score

