Algorithms for NLP

Parsing I

Yulia Tsvetkov – CMU

Slides: Ivan Titov – University of Edinburgh, Taylor Berg-Kirkpatrick – CMU/UCSD, Dan Klein – UC Berkeley

Ambiguity

I saw a girl with a telescope

INPUT:

 The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

- Data for parsing experiments:
 - Penn WSJ Treebank = 50,000 sentences with associated trees
 - Usual set-up: 40,000 training, 2,400 test

Canadian Utilities had 1988 revenue of \$ 1.16 billion , mainly from its natural gas and

electric utility businesses in Alberta , where the company serves about 800,000 customers[from Michael Collins slides]

Outline

- Syntax: intro, CFGs, PCFGs
- CFGs: Parsing
- PCFGs: Parsing
- Parsing evaluation

Syntax

- The study of the patterns of formation of sentences and phrases from word
 - my dog Pron N the dog Det N the cat Det N
 - the large cat Det Adj N
 - the black cat
- Det Adj N
- V Det N ate a sausage

- The study of the patterns of formation of sentences and phrases from word
 - Borders with semantics and morphology sometimes blurred

Afyonkarahisarlılaştırabildiklerimizdenmişsinizcesinee

in Turkish means

"as if you are one of the people that we thought to be originating from Afyonkarahisar" [wikipedia]

- The process of predicting syntactic representations
- Syntactic Representations
 - Different types of syntactic representations are possible, for example:

Constuent (a.k.a. phrase-structure) tree

- Internal nodes correspond to phrases
 - S a sentence
 - NP (Noun Phrase): My dog, a sandwich, lakes,...
 - VP (Verb Phrase): ate a sausage, barked, ...
 - PP (Prepositional phrases): with a friend, in a car, ...

Nodes immediately above words are PoS tags (aka preterminals)

- PN pronoun
- D determiner
- V verb
- N noun
- P preposition

Bracketing notation

It is often convenient to represent a tree as a bracketed sequence

(S

(NP (PN My) (N Dog))

(VP (V ate)

```
(NP (D a ) (N sausage))
```

)

- The process of predicting syntactic representations
- Syntactic Representations
 - Different types of syntactic representations are possible, for example:

Dependency trees

- Nodes are words (along with PoS tags)
- Directed arcs encode syntactic dependencies between them
- Labels are types of relations between the words
 - poss possesive
 - dobj direct object
 - nsub subject
 - det determiner

Recovering shallow semantics

- Some semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are (often) agents ("initiator / doers for an action")
 - Direct objects (dobj) are (often) patients ("affected entities")

Recovering shallow semantics

- Some semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are (often) agents ("initiator / doers for an action")
 - Direct objects (dobj) are (often) patients ("affected entities")
- But even for agents and patients consider:
 - Mary is baking a cake in the oven
 - A cake is baking in the oven
- In general it is not trivial even for the most shallow forms of semantics
 - E.g., consider prepositions: *in* can encode direction, position, temporal information, ...

 Constituent trees can (potentially) be converted to dependency trees

Dependency trees can (potentially) be converted to constituent trees
 s

- Internal nodes correspond to phrases
 - S a sentence
 - NP (Noun Phrase): My dog, a sandwich, lakes,...
 - VP (Verb Phrase): ate a sausage, barked, ...
 - PP (Prepositional phrases): with a friend, in a car, ...

Nodes immediately above words are PoS tags (aka preterminals)

- PN pronoun
- D determiner
- V verb
- N noun
- P preposition

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - Movement
 - Clefting
 - Preposing
 - Passive
 - Modification
 - Coordination/Conjunction
 - Ellipsis/Deletion

Conflicting Tests

- Constituency isn't always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go \rightarrow I'll go
 - I want to go \rightarrow I wanna go
 - a le centre \rightarrow au centre

La vélocité des ondes sismiques

Context Free Grammar (CFG)

Grammar (CFG)

Lexicon

. . .

$ROOT \to S$	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S \to NP \; VP$	$VP \rightarrow VBP NP$	$NNS \rightarrow raises$
$NP \rightarrow DT NN$	$VP \rightarrow VBP NP PP$	$VBP \rightarrow interest$
$NP \rightarrow NN NNS$	$PP \rightarrow IN NP$	$VBZ \rightarrow raises$

• Other grammar formalisms: LFG, HPSG, TAG, CCG...


```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                 (NP (NP similar increases)
                      (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans)))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```


$S \rightarrow NP \ VP$	$N \to girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \to V NP$ $UP \to VP DE$	$PN \rightarrow I$
$V \ \Gamma \rightarrow V \ \Gamma \ \Gamma \ \Gamma$	$V \rightarrow saw$
$NP \rightarrow NP PP$	$V \rightarrow ate$
NP ightarrow D N	$P \rightarrow with$
$NP \to PN$	$P \rightarrow in$
	$D \rightarrow a$
$PP \rightarrow P \ NP$	$D \rightarrow the$

 \mathbf{S}

 $S \rightarrow NP VP \qquad \qquad N \rightarrow girl$

 $VP \rightarrow V$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $NP \rightarrow NP PP$

 $NP \rightarrow D N$

 $NP \rightarrow PN$

 $PP \rightarrow P NP$

- $N \rightarrow telescope$
- $N \rightarrow sandwich$
 - $PN \rightarrow I$
 - $V \rightarrow saw$
 - $V \rightarrow ate$
 - $P \rightarrow with$
 - $P \rightarrow in$
 - $D \to a$
 - $D \rightarrow the$

$S \rightarrow NP \ VP$	$N \to girl$
	$N \rightarrow telescope$
$VP \to V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	
$VP \rightarrow VP PP$	$PN \rightarrow I$
	$V \rightarrow saw$
$NP \rightarrow NP PP$	$V \rightarrow ate$
$NP \rightarrow D N$	$P \rightarrow with$
$NP \rightarrow PN$	$P \rightarrow in$
	$D \rightarrow a$
$PP \rightarrow P NP$	$D \rightarrow the$

$S \rightarrow NP \ VP$	$N \to girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$ $VP \rightarrow VP DP$	$PN \rightarrow I$
$V I \rightarrow V I I I$	$V \rightarrow saw$
$NP \rightarrow NP PP$	$V \rightarrow ate$
$NP \rightarrow D N$	$P \rightarrow with$
$NP \to PN$	$P \rightarrow in$
	$D \rightarrow a$
$PP \rightarrow P \ NP$	$D \rightarrow the$

-COU

 $S \rightarrow NP VP$

 $VP \rightarrow VP PP$

 $NP \rightarrow NP PP$

 $NP \rightarrow D N$

 $PP \rightarrow P NP$

 $NP \to PN$

 $VP \rightarrow V$

 $N \to girl$ $N \rightarrow telescope$ $N \rightarrow sandwich$ $VP \rightarrow V NP$ $PN \to I$ $V \to saw$ 4 $V \rightarrow ate$ $P \rightarrow with$ $P \rightarrow in$ $D \to a$ $D \rightarrow the$

$S \rightarrow NP \ VP$	$N \to girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \to V NP$ $VP VD DD$	$PN \rightarrow I$
$V \ \Gamma \rightarrow V \ \Gamma \ \Gamma \ \Gamma$	$V \rightarrow saw$
$NP \rightarrow NP PP$	$V \rightarrow ate$
$NP \rightarrow D N$	$P \rightarrow with$
$NP \to PN$	$P \rightarrow in$
	$D \to a$
$PP \rightarrow P \ NP$	$D \rightarrow the$

 $S \rightarrow NP \ VP \qquad \qquad N \rightarrow girl$

 $VP \rightarrow V$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $NP \rightarrow NP PP$

 $NP \rightarrow D N$

 $PP \rightarrow P NP$

 $NP \to PN$

- $N \rightarrow telescope$
- $N \rightarrow sandwich$
 - $PN \rightarrow I$
 - $V \rightarrow saw$
 - $V \rightarrow ate$
 - $P \rightarrow with$
 - $P \to in$
 - $D \to a$
 - $D \rightarrow the$

	$S \rightarrow NP \ VP$
S	$VP \rightarrow V$
	$VP \rightarrow V NP$
NP VP	$VP \rightarrow VP PP$
PN V NP	$NP \rightarrow NP PP$
I saw NP PP	$NP \rightarrow D N$
D N P NP	$NP \to PN$
$\begin{array}{c cccc} & & \\ a & girl & with & D & N \\ & & \\ a & telescop\epsilon \end{array}$	$PP \rightarrow P \ NP$

 $N \rightarrow telescope$ $N \rightarrow sandwich$ $PN \rightarrow I$ $V \rightarrow saw$ $V \rightarrow ate$ $P \rightarrow with$

 $N \to girl$

 $P \rightarrow in$ $D \rightarrow a$ $D \rightarrow the$

A context-free grammar is a 4-tuple <*N*, *T*, *S*, *R*>

- N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- T: the set of terminals (the words)
- S: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R : the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with $X, Y_i \in N$
 - Examples: S \rightarrow NP VP, VP \rightarrow VP CC VP
 - Also called rewrites, productions, or local trees

An example grammar

$N = \{S, VP, NP, I\}$	$PP, N, V, PN, P\}$	
$T = \{girl, telescoperator \}$	$pe, sandwich, I, saw, ate, with, in, a, the \}$	
$S = \{S\}$		Preterminal rules
R :	Called Inner rules	
$S \rightarrow NP \ VP$	(NP A girl) (VP ate a sandwich)	N ightarrow girl
		$N \rightarrow telescope$
$VP \to V$		$N \rightarrow sandwich$
$VP \rightarrow V NP$	(V ate) (NP a sandwich)	$PN \rightarrow I$
$VP \rightarrow VP PP$	(VP saw a girl) (PP with a telescope)	$V \rightarrow saw$
$NP \rightarrow NP PP$	(NP a girl) (PP with a sandwich)	$V \rightarrow ate$
$NP \rightarrow D N$	(D a) (N sandwich)	$P \rightarrow with$
$NP \rightarrow PN$		P ightarrow in
		$D \rightarrow a$
$PP \rightarrow P \ NP$	(P with) (NP with a sandwich)	$D \rightarrow the$

Why context-free?

Why context-free?

 Here, the coarse VP and NP categories cannot enforce subject-verb agreement in number resulting in the coordination ambiguity

This tree would be ruled out if the context would be somehow captured (subject-verb agreement)

Ambiguities

Why parsing is hard? Ambiguity

Prepositional phrase attachment ambiguity

Copyright © Ron Leishman * http://ToonGlips.com/300

Put the block in the box on the table in the kitchen

- 3 prepositional phrases, 5 interpretations:
 - Put the block ((in the box on the table) in the kitchen)
 - Put the block (in the box (on the table in the kitchen))
 - Put ((the block in the box) on the table) in the kitchen.
 - Put (the block (in the box on the table)) in the kitchen.
 - Put (the block in the box) (on the table in the kitchen)

Put the block in the box on the table in the kitchen

- 3 prepositional phrases, 5 interpretations:
 - Put the block ((in the box on the table) in the kitchen)
 - Put the block (in the box (on the table in the kitchen))
 - Put ((the block in the box) on the table) in the kitchen.
 - Put (the block (in the box on the table)) in the kitchen.
 - Put (the block in the box) (on the table in the kitchen)

• A general case: $Cat_n = \binom{2n}{n} - \binom{2n}{n-1} \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}$

Catalan numbers

 $1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \ldots$

A typical tree from a standard dataset (Penn treebank WSJ)

Canadian Utilities had 1988 revenue of \$ 1.16 billion , mainly from its natural gas and electric utility businesses in Alberta , where the company serves about 800,000 customers .

[from Michael Collins slides]

Prepositional phrases:

They cooked the beans in the pot on the stove with handles.

- Particle vs. preposition: The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective Visiting relatives can be boring. Changing schedules frequently confused passengers.

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions The chicken is ready to eat. The contractors are rich enough to sue.
- Coordination scope: Small rats and mice can squeeze into holes or cracks in the wall.

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

"This is panic buying !"

- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

How to Deal with Ambiguity?

Put the block in the box on the table in the kitchen

 We want to score all the derivations to encode how plausible they are

A context-free grammar is a tuple <*N*, *T*, *S*, *R*>

- N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- T: the set of terminals (the words)
- S: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R : the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with $X, Y_i \in N$
 - Examples: S \rightarrow NP VP, VP \rightarrow VP CC VP
 - Also called rewrites, productions, or local trees

A PCFG adds:

• A top-down production probability per rule $P(Y_1 Y_2 ... Y_k | X)$

Associate pro	babilities with t $\forall X \rightarrow \alpha \in I$	he rules : $p(X \to \alpha)$ $R: 0 \le p(X \to \alpha) \le 1$	Now we can score a tree a product of probabilities corresponding to the used	is a rules
	$\forall X \in N$:	$\sum_{\alpha: X \to \alpha \in R} p(X \to \alpha) = 1$		
$S \rightarrow NP VP$	1.0	(NP A girl) (VP ate a sandwich)	$N \rightarrow girl$	0.2
		($N \rightarrow telescope$	0.7
$VP \rightarrow V$	0.2		$N \rightarrow sandwich$	0.1
$VP \rightarrow V NP$	0.4	(VP ate) (NP a sandwich)	$PN \rightarrow I$	1.0
$VP \rightarrow VP PP$	0.4	(VP saw a girl) (PP with)	$V \rightarrow saw$	0.5
			$V \rightarrow ate$	0.5
$NP \rightarrow NP PP$	0.3	(NP a girl) (PP with)	$P \longrightarrow avith$	0.6
$NP \rightarrow D N$	0.5	(D a) (N sandwich)	$I \rightarrow W l l l l$	0.0
$NP \rightarrow PN$	0.2		$P \rightarrow in$	0.4
			$D \to a$	0.3
$PP \rightarrow P NP$	1.0	(P with) (NP with a sandwich)	$D \rightarrow the$	0.7

		PCFGs	
		$S ightarrow NP \ VP$ 1.0	N ightarrow girl 0.2
			$N \rightarrow telescope 0.7$
	S	VP ightarrow V 0.2	$N \rightarrow sandwich {\rm 0.1}$
		$VP \rightarrow V NP 0.4$	PN ightarrow I 1.0
		$VP \rightarrow VP PP 0.4$	V ightarrow saw 0.5
		$NP \rightarrow NP PP 0.3$	$V ightarrow ate^{ 0.5}$
		NP ightarrow D N 0.5	P ightarrow with 0.6
		$NP \rightarrow PN$ 0.2	P ightarrow in 0.4
			D ightarrow a 0.3
		$PP \rightarrow P \ NP $ 1.0	$D \rightarrow the^{0.7}$

 $N \to girl \, {\rm 0.2}$ $N \rightarrow telescope$ 0.7 $N \rightarrow sandwich 0.1$ $PN \rightarrow I$ 1.0 $V \rightarrow saw$ 0.5 $V \rightarrow ate^{0.5}$ $P \rightarrow with \, \text{O.6}$ $P \rightarrow in$ 0.4 D
ightarrow a 0.3 $D \rightarrow the 0.7$

S ightarrow NP VP 1.0
$VP \rightarrow V $ 0 2
$VP \rightarrow V NP 0.2$
$VP \rightarrow VP PP 0.4$
$NP \rightarrow NP PP 03$
$NP \rightarrow D N 0.5$
$NP \rightarrow PN$ 0.2
$PP \rightarrow P NP 1.0$

 $S \rightarrow NP VP$ 1.0 $N \rightarrow girl$ 0.2 $N \rightarrow telescope$ 0.7 $VP \rightarrow V$ 0.2 $N \rightarrow sandwich 0.1$ $VP \rightarrow V NP 0.4$ $PN \rightarrow I$ 1.0 $VP \rightarrow VP PP 0.4$ $V \rightarrow saw$ 0.5 $V \rightarrow ate^{0.5}$ $NP \rightarrow NP PP 0.3$ $NP \rightarrow D N 0.5$ $P \rightarrow with 0.6$ NP
ightarrow PN 0.2 P
ightarrow in 0.4 $D \rightarrow a 0.3$ $PP \rightarrow P NP 1.0$ $D \rightarrow the 0.7$

$$p(T) = 1.0 \times 0.2 \times$$

$S ightarrow NP \ VP$ 1.0	N ightarrow girl 0.2
	$N \rightarrow telescope {\rm O.7}$
$VP \rightarrow V$ 0.2	$N ightarrow sandwich { m 0.1}$
$VP \rightarrow V \ NP$ 0.4	$PN \rightarrow I10$
$VP \rightarrow VP PP 0.4$	
	V ightarrow saw 0.5
$NP \rightarrow NP PP 0.3$	$V ightarrow ate^{0.5}$
$NP \rightarrow D \ N \ 0.5$	P ightarrow with 0.6
$NP \rightarrow PN$ 0.2	P ightarrow in 0.4
	D ightarrow a 0.3
$I \ I \rightarrow I \ I \lor I \ 1.0$	$D \rightarrow the^{0.7}$

 $p(T) = 1.0 \times 0.2 \times 1.0 \times$

$S \rightarrow NP \ VP$ 1.0	N ightarrow girl 0.2
	$N \rightarrow telescope 0.7$
$VP \rightarrow V$ 0.2	$N \rightarrow sandwich $ 0.1
$VP \rightarrow V NP 0.4$ $VP \rightarrow VP PP 0.4$	PN ightarrow I 1.0
	V ightarrow saw 0.5
$NP \rightarrow NP PP 0.3$	$V ightarrow ate^{ { m 0.5}}$
NP ightarrow D N 0.5	P ightarrow with 0.6
$NP \rightarrow PN$ 0.2	P ightarrow in 0.4
	D ightarrow a 0.3
$\Gamma \Gamma \rightarrow \Gamma IV \Gamma I.0$	$D \rightarrow the$ 0.7

 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times$

 $S \rightarrow NP VP$ 1.0 $N \rightarrow girl$ 0.2 $N \rightarrow telescope$ 0.7 $VP \rightarrow V$ 0.2 $N \rightarrow sandwich 0.1$ $VP \rightarrow V NP 0.4$ $PN \rightarrow I$ 1.0 $VP \rightarrow VP PP 0.4$ $V \rightarrow saw$ 0.5 $V \rightarrow ate^{0.5}$ $NP \rightarrow NP PP 0.3$ $NP \rightarrow D N 0.5$ $P \rightarrow with 0.6$ $NP \rightarrow PN$ 0.2 $P \rightarrow in$ 0.4 $D \rightarrow a$ 0.3 $PP \rightarrow P NP 1.0$ $D \rightarrow the 0.7$

$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times$

 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times$

.

a

 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7 = 2.26 \times 10^{-5}$

PCFG Estimation

ML estimation

A treebank: a collection sentences annotated with constituent

An estimated probability of a rule (maximum likelihood) estimates) The number of times the rule used in the

$$p(X \to \alpha) = \frac{C(X \to \alpha)}{C(X)}$$

corpus

The number of times the nonterminal X appears in the treebank

- Smoothing is helpful
 - Especially important for preterminal rules

- We defined a distribution over production rules for each nonterminal
- Our goal was to define a distribution over parse trees

Unfortunately, not all PCFGs give rise to a proper distribution over trees, i.e. the sum over probabilities of all trees the grammar can generate may be less than 1: $\sum_{T} P(T) < 1$

 Good news: any PCFG estimated with the maximum likelihood procedure are always proper (Chi and Geman, 98)

- Wall street journal: around 40, 000 annotated sentences, 1,000,000 words
 - Fine-grained part of speech tags (45), e.g., for verbs

VBD	Verb, past tense
VBG	Verb, gerund or present participle
VBP	Verb, present (non-3 rd person singular)
VBZ	Verb, present (3 rd person singular)
MD	Modal

CKY Parsing

- Parsing is search through the space of all possible parses
 - e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):

```
\underset{T \in G(x)}{\operatorname{arg max}} P(T)
```

- Bottom-up:
 - One starts from words and attempt to construct the full tree
- Top-down
 - Start from the start symbol and attempt to expand to get the sentence

- Cocke-Kasami-Younger algorithm
 - Independently discovered in late 60s / early 70s
- An efficient bottom up parsing algorithm for (P)CFGs
 - can be used both for the recognition and parsing problems
 - Very important in NLP (and beyond)
- We will start with the non-probabilistic version

 The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

• The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF): $C \rightarrow x$

 $C \to C_1 C_2$

- Any CFG can be converted to an equivalent CNF
 - Equivalent means that they define the same language
 - However (syntactic) trees will look differently
 - It is possible to address it by defining such transformations that allows for easy reverse transformation

What one need to do to convert to CNF form

- Get rid of unary rules: $C \rightarrow C_1$
- Get rid of N-ary rules: $C \rightarrow C_1 C_2 \dots C_n$ (n > 2)

Not a problem, as our CKY algorithm will support unary rules

Crucial to process them, as required for efficient parsing

• How do we get a set of binary rules which are equivalent?

• How do we get a set of binary rules which are equivalent?

 $NP \to DT X$ $X \to NNP Y$ $Y \to VBG NN$

- How do we get a set of binary rules which are equivalent?
 - $NP \to DT \ X$
 - $X \to NNP \ Y$
 - $Y \rightarrow VBG NN$
- A more systematic way to refer to new non-terminals NP → DT @NP|DT
 @NP|DT → NNP @NP|DT_NNP
 @NP|DT_NNP → VBG NN

- We a given
 - a grammar <N, T, S, R>
 - a sequence of words $\boldsymbol{w} = (w_1, w_2, \dots, w_n)$

• Our goal is to produce a parse tree for w

- We a given
 - a grammar <N, T, S, R>
 - a sequence of words $\boldsymbol{w} = (w_1, w_2, \dots, w_n)$
- Our goal is to produce a parse tree for w
- We need an easy way to refer to substrings of w

span (i, j) refers to words between fenceposts i and j

Parsing one word

Wi

Parsing one word

Parsing one word

 $C \to w_i$

covers all words between *i* – 1 and *i*

Parsing longer spans

$C \to C_1 \ C_2$

Check through all C1, C2, mid

btw min and mid btw mid and max	covers all words btw <i>min</i> and <i>mid</i>	covers all words btw <i>mid</i> and <i>max</i>
---------------------------------	--	--

Parsing longer spans

covers all words between *min* and *max*

CKY in action	$S \rightarrow NP \ VP$	
lead can poison	$VP \to M V$ $VP \to V$	ner rules
0 1 2 3		l
	$NP \rightarrow N$	
	$NP \rightarrow N NP$	
	$N \rightarrow can$	
	$N \rightarrow lead$	(A)
	$N \rightarrow poison$	rules
	$M \rightarrow can$	minal
	$M \rightarrow must$	reter
	$V \rightarrow poison$	<u>م</u>
	$V \rightarrow lead$	

lead	d 0 1	can	pois	on 3					$VP \to M \ V$ $VP \to V$	Inner rules
									$NP \to N$	
					max = 1	max = 2	max = 3		$NP \to N \ NP$	
				min = 0			S?		N ightarrow can N ightarrow lead N ightarrow poison	al rules
				min = 1					$M \to can$	mina
									$M \rightarrow must$	eteri
				min = 2				Chart (aka parsing triangle)	$V ightarrow poison \ V ightarrow lead$	P

 $V \rightarrow lead$

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \begin{array}{c} \text{can} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$				$VP \to M \ V$ $VP \to V$	Inner rules
	max = 1	max = 2	max = 3	$NP \to N$ $NP \to N NP$	
min = 0			S?	N ightarrow can N ightarrow lead N ightarrow poison	rules
min = 1				$\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$	eterminal
min = 2				$V ightarrow poison \ V ightarrow lead$	Pre

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \text{ can } \begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$			$VP \to M \ V$ $VP \to V$	Inner rules
			$NP \rightarrow N$	
	max = 1 max = 2	max = 3	$NP \rightarrow N NP$	
min = 0		6 S?	N ightarrow can N ightarrow lead N ightarrow poison	rules
min = 1	2	3	$\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$	Preterminal
min = 2			$V ightarrow poison \ V ightarrow lead$	

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \begin{array}{c} \text{can} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$		$VP \to M V$ $VP \to V$	Inner rules
	max = 1 $max = 2$ $max = 3$	$NP \to N$ $NP \to N NP$	
min = 0 min = 1	$\begin{bmatrix} 1 & 4 & 6 \\ & & S? \\ & & 2 & 5 \\ \hline & & 1 & 1 \\ \hline &$	N ightarrow can N ightarrow lead N ightarrow poison M ightarrow can M ightarrow must	terminal rules
min = 2	3	$V ightarrow poison \ V ightarrow lead$	Pre

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \begin{array}{c} \text{can} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$				$VP \to M V$ $VP \to V$	Inner rules
			л.	$NP \rightarrow N$	
	max = 1 max = 2	2 max = 3		$P \rightarrow N NP$	
min = 0	1]	$N \rightarrow can$	
				$N \to lead$ $N \to poison$	ules
m in = 1	2 ?			$M \to can$ $M \to must$	terminal ru
min = 2		з ?		$V ightarrow poison \ V ightarrow lead$	Pre

VP

lead can poison				$VP \to M V$ $VP \to V$	nner rules
0 1 2 3	max = 1 max = 2	max = 3	_	$NP \rightarrow N$ $NP \rightarrow N NP$	-
min = 0) ¹ ?			$N ightarrow can \ N ightarrow lead \ N ightarrow poison$	ules
m in = 1	2 ?			$\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$	terminal r
min = 2	<u>}</u>	³ ?		$V \rightarrow poison$ $V \rightarrow lead$	Pre

lead ca	n poison			$VP \to M \ V$ $VP \to V$	ner rules
0 1	2 3				
				$NP \to N$	
		$\max = 1 \qquad \max = 2$	max = 3	$INP \rightarrow IN INP$	
	min = 0	$\begin{bmatrix} 1 & N, V \end{bmatrix}$		$egin{array}{c} N ightarrow can \ N ightarrow lead \ N ightarrow poison \end{array}$	ules
	m in = 1	$^{2}N,M$		$\begin{array}{c} M \to can \\ M \to must \end{array}$	terminal r
	min = 2		³ N,V	$\begin{bmatrix} V \to poison \\ V \to lead \end{bmatrix}$	Pre

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \text{ can} \begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$			$VP \to M \ V$ $VP \to V$	Inner rules
	max = 1 max = 2	max = 3	$NP \to N$ $NP \to N NP$	
min = 0	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}^4$?		N ightarrow can N ightarrow lead N ightarrow poison	ules
m in = 1	² N, M NP	2 37 77	$M \to can$ $M \to must$	eterminal r
min = 2		° N,V NP,VP	$V ightarrow poison \ V ightarrow lead$	Pr

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \text{can} \begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$				$VP \to M \ V$ $VP \to V$	Inner rules
				$NP \rightarrow N$	
	max = 1 max	x = 2 max = 3	Check about	$NP \rightarrow N NP$	
min = 0	$\begin{bmatrix} 1 & N, V & 4 & N \\ NP, VP & & & \end{bmatrix}$		unary rules: no unary rules here	N ightarrow can N ightarrow lead N ightarrow poison	ules
min = 1	2 N N			$M \to can$ $M \to must$	eterminal r
min = 2		³ N,V NP,VF		$V ightarrow poison \ V ightarrow lead$	Pre

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \text{ can} \begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$			·	$VP \to M V$ $VP \to V$	Inner rules
	max = 1 max = 2	max = 3	_	$NP \to N$ $NP \to N NP$	
min = 0	$\begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & \end{bmatrix}$			N ightarrow can N ightarrow lead N ightarrow poison	ules
min = 1	² N, M NP	⁵ ?		$M \to can$ $M \to must$	eterminal r
min = 2		3 N, V NP, VP		$V ightarrow poison \ V ightarrow lead$	Pre

CKY in action					$S \rightarrow NP \ VP$	
lead can poison					$VP \to M \ V$ $VP \to V$	er rules
0 1 2 3	max = 1	max = 2	max = 3	Check about	$NP \rightarrow N$ $NP \rightarrow N NP$	ul
min = 0	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}$	⁴ NP		unary rules: no unary rules here	N ightarrow can N ightarrow lead N ightarrow poison	ules
m in = 1		² N, M NP	5S, VP, NP		$M \to can$ $M \to must$	reterminal r
min = 2			NP,VP		$V ightarrow poison \ V ightarrow lead$	Ē

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \operatorname{can} \begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$			Ţ	$P \to M V$ $VP \to V$	Inner rules
	max = 1 max = 2	max = 3	N	$NP \to N$ $P \to N NP$	
min = 0	$\begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & & \end{bmatrix}$	6 ?		N ightarrow can N ightarrow lead N ightarrow poison	ules
m in = 1	² N, M NP	5S, VP, NP		$M \to can$ $M \to must$	eterminal r
min = 2	2	NP,VP		$V ightarrow poison \ V ightarrow lead$	Ē

$\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} $ can $\begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$			$VP \to M \ V$ $VP \to V$	Inner rules
	max = 1 max = 2 r	max = 3	$NP \to N$ $NP \to N NP$	
min = 0	$\begin{bmatrix} 1 & N, V & 4 & NP \\ \hline NP, VP & & & \\ \hline \end{bmatrix} \begin{bmatrix} 6 & & & \\ \hline NP, VP & & & \\ \hline \end{bmatrix}$?	N ightarrow can N ightarrow lead N ightarrow poison	ules
m in = 1	$\begin{bmatrix} 2 & N, M & 5 \\ NP & \end{bmatrix}$	S, P, P, P	$M \to can$ $M \to must$	eterminal r
min = 2	3 N	N V NP VP	$V ightarrow poison \ V ightarrow lead$	Pre

	an poison			$\begin{array}{ccc} VP \rightarrow M & V \\ VP \rightarrow V \end{array}$	ner rules
0 1	2 3	max = 1 max = 2	max = 3	$NP \to N$ $NP \to N NP$	<u></u>
mid=1	min = 0	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}^{4} NP$	⁶ <i>S</i> , <i>NP</i>	N ightarrow can N ightarrow lead N ightarrow poison	ules
	min = 1	² N, M NP	${}^{5}S, VP,$ NP	$\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$	eterminal r
	min = 2		³ N, V NP, VP	$V ightarrow poison \ V ightarrow lead$	Pre

lead ca 0 1	n poison 2 3			$\begin{array}{ccc} VP \rightarrow M & V \\ VP \rightarrow V \end{array}$	Inner rules
		max = 1 max = 2	max = 3	$NP \to N$ $NP \to N NP$	
mid=2	min = 0	$\begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & & \end{bmatrix}$	${}^{6}S, NP$ S(?!)	N ightarrow can N ightarrow lead N ightarrow poison	rules
	min = 1	² N, M NP	S, VP, NP NV	$\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$	reterminal
	min = 2		NP,VP	$V ightarrow poison \ V ightarrow lead$	<u>۵</u>

Ambiguity

No subject-verb agreement, and *poison* used as an intransitive verb

CKY more formally

Here we assume that labels (C) are integer indices

Chart can be represented by a Boolean 3D array chart [min] [max] [C]

max = 2

▶ Relevant entries have 0 < min < max \leq n

max = 1

chart[min][max][C] = true if the signature (min, max, C) is already added to the chart; false otherwise.

max = 3

for each wi from left to right

for each preterminal rule C \rightarrow w_i

chart[i - 1][i][C] = true

• How to integrate unary rules $C \rightarrow C_{1}$?

• How to integrate unary rules $C \rightarrow C_{1}$?

for each max from 1 to n new bounds!

// First, try all binary rules as before.

. . .

// Then, try all unary rules.

for each syntactic category C

for each unary rule C \rightarrow C₁

if chart[min][max][C1] then

chart[min][max][C] = true

• How to integrate unary rules $C \rightarrow C_1$?

for each max from 1 to n for each min from max - 1 down to 0

// First, try all binary rules as before.

. . .

// Then, try all unary rules.

for each syntactic category C

for each unary rule C \rightarrow C₁

if chart[min][max][C1] then

But we forgot something!

- What if the grammar contained 2 rules:
 - $\begin{array}{c} A \to B \\ B \to C \end{array}$
- But C can be derived from A by a chain of rules:

 $A \to B \to C$

 One could support chains in the algorithm but it is easier to extend the grammar, to get the transitive closure

$$\begin{array}{ccc} A \to B \\ B \to C \end{array} \qquad \Rightarrow \qquad \begin{array}{ccc} A \to B \\ B \to C \\ A \to C \end{array}$$

- What if the grammar contained 2 rules:
 - $\begin{array}{c} A \to B \\ B \to C \end{array}$
- But C can be derived from A by a chain of rules:

 $A \to B \to C$

 One could support chains in the algorithm but it is easier to extend the grammar, to get the transitive closure

$$\begin{array}{ccc} A \rightarrow B & & A \rightarrow A \\ B \rightarrow C & & B \rightarrow C & & B \rightarrow B \\ A \rightarrow C & & A \rightarrow C & & C \rightarrow C \end{array} \begin{array}{c} \text{Convenient for} \\ \text{programming} \\ \text{reasons in the PCFG} \end{array}$$

Time complexity?

for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C

for each binary rule C -> C1 C2

for each mid from min + 1 to max - 1

Time complexity?

for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C

for each binary rule C -> C1 C2

for each mid from min + 1 to max - 1

O(n³|R|) where |R| is is the number of rules in the grammar

Probabilistic CKY

$N \rightarrow girl$ 0.2 $S \rightarrow NP VP$ 1.0 PCFGs $N \rightarrow telescope$ 0.7 $VP \rightarrow V$ 0.2 $N \rightarrow sandwich 0.1$ $VP \rightarrow V NP 0.4$ $PN \rightarrow I$ 1.0 $VP \rightarrow VP PP 0.4$ \mathbf{S} $V \rightarrow saw$ 0.5 $V \rightarrow ate^{0.5}$ $NP \rightarrow NP PP 0.3$ ŴР $NP \rightarrow D N 0.5$ $P \rightarrow with 0.6$ \mathbf{PN} ŃP 1|.0 $NP \rightarrow PN$ 0.2 $P \rightarrow in$ 0.4 0.5 0.3 saw $D \rightarrow a 0.3$ ŃP ΡP 1.0 $PP \rightarrow P NP$ 1.0 $D \rightarrow the 0.7$ \mathbf{D} Ν Ý. ŇΡ 0.2 0.6 0.3 0.5 girl \mathbf{a} with D Ν 0.7 0.3 telescope \mathbf{a}

 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7$ $= 2.26 \times 10^{-5}$

- Chart is represented by a 3d array of floats chart[min][max][label]
 - It stores probabilities for the most probable subtree with a given signature
- chart[0][n][S] will store the probability of the most probable full parse tree

Intuition

$C \to C_1 \ C_2$

covers all words	covers all words
btw min and mid	btw <i>mid</i> and <i>max</i>

For every C choose C_1, C_2 and mid such that $P(T_1) \times P(T_2) \times P(C \to C_1C_2)$

is maximal, where T_1 and T_2 are left and right subtrees.

for each w_i from left to right

for each preterminal rule C -> wi
chart[i - 1][i][C] = p(C -> wi)

Implementation: binary rules

for each max from 2 to n

```
for each min from max - 2 down to 0
  for each syntactic category C
    double best = undefined
    for each binary rule C \rightarrow C<sub>1</sub> C<sub>2</sub>
       for each mid from min + 1 to max - 1
         double t_1 = chart[min][mid][C_1]
         double t_2 = chart[mid][max][C_2]
         double candidate = t_1 * t_2 * p(C \rightarrow C_1 C_2)
         if candidate > best then
           best = candidate
    chart[min][max][C] = best
```


- Similarly to CFGs: after producing scores for signatures (c, i, j), try to improve the scores by applying unary rules (and rule chains)
 - If improved, update the scores

to I for each parent

Unary (reflexive trans The fact that the rule is composite needs to be

stored to recover the true tree

to I for each parent

Unary (reflexive trans The fact that the rule is composite needs to be

stored to recover the true tree

Note that this is not a PCFG anymore as the rules do not sum to 1 for each parent

 $A \to B$ 0.1 $A \to B$ 0.1 $A \to A$ 1 0.2 \Rightarrow $B \rightarrow C$ 0.1 $B \to C$ $B \to B$ 1 $A \rightarrow C \qquad 1.e - 5$ $A \to C$ $C \to C$ 0.02

What about loops, like: $A \to B \to A \to C$?

- For each signature we store backpointers to the elements from which it was built (e.g., rule and, for binary rules, midpoint)
 - start recovering from [0, n, S]
- Be careful with unary rules
 - Basically you can assume that you always used an unary rule from the closure (but it could be the trivial one $C \rightarrow C$)

Speeding up the algorithm (approximate search)

Any ideas?

- Basic pruning (roughly):
 - For every span (i,j) store only labels which have the probability at most N times smaller than the probability of the most probable label for this span
 - Check not all rules but only rules yielding subtree labels having non-zero probability
- Coarse-to-fine pruning
 - Parse with a smaller (simpler) grammar, and precompute (posterior) probabilities for each spans, and use only the ones with non-negligible probability from the previous grammar

- Intrinsic evaluation:
 - Automatic: evaluate against annotation provided by human experts (gold standard) according to some predefined measure
 - Manual: ... according to human judgment

- Extrinsic evaluation: score syntactic representation by comparing how well a system using this representation performs on some task
 - E.g., use syntactic representation as input for a semantic analyzer and compare results of the analyzer using syntax predicted by different parsers.

- Automatic intrinsic evaluation is used: parsers are evaluated against gold standard by provided by linguists
 - There is a standard split into the parts:
 - training set: used for estimation of model parameters
 - development set: used for tuning the model (initial experiments)
 - test set: final experiments to compare against previous work

- Exact match: percentage of trees predicted correctly
- Bracket score: scores how well individual phrases (and their boundaries) are identified
- Crossing brackets: percentage of phrases boundaries crossing

The most standard measure; we will focus on it

Subtree signatures for CKY

- The most standard score is bracket score
- It regards a tree as a collection of brackets: [min, max, C]
- The set of brackets predicted by a parser is compared against the set of brackets in the tree annotated by a linguist
- Precision, recall and F1 are used as scores

Preview: F1 bracket score

