Computational Social Science: Methods and Applications

Anjalie Field, anjalief@cs.cmu.edu
Overview

● Defining computational social science
 ○ Sample problems

● Common Methodology (Topic Models)
 ○ LDA
 ○ Evaluation
 ○ Limitations
 ○ Extensions
Definitions and Examples
What is Computational Social Science?

“The study of social phenomena using digitized information and computational and statistical methods” [Wallach 2018]
Social Science

- When and why do senators deviate from party ideologies?
- Analyze the impact of gender and race on the U.S. hiring system
- Examine to what extent recommendations affect shopping patterns vs. other factors

Traditional NLP

- How many senators will vote for a proposed bill?
- Predict which candidates will be hired based on their resumes
- Recommend related products to Amazon shoppers

[Wallach 2018]
How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not engaged argument [King et al. 2017]

- In 2014 email archive was leaked from the Internet Propaganda Office of Zhanggong

- Reveal the work of “50c party members”: people who are paid by the Chinese government to post pro-government posts on social media
Sample Research Questions [King et al. 2017]

- **When** are 50c posts most prevalent?
- What is the **content** of 50c posts?
- What does this reveal about overall government strategies?
- Additionally:
 - Who are 50c party members?
 - How common are 50c posts?
Preparations [King et al. 2017]

- Thorough analysis of journalist, academic, social media perceptions of 50c party members

- Data Processing
 - Messy data, attachments, PDFs
Preliminary Analysis [King et al. 2017]

- Network structure
- Time series analysis: posts occur in bursts around specific events

FIGURE 2. Time Series of 43,757 Known 50c Social Media Posts with Qualitative Summaries of the Content of Volume Bursts
Content Analysis [King et al. 2017]

- Hand-code ~200 samples into content categories
 - Cheerleading, Argumentative, Non-argumentative, Factual Reporting, Taunting Foreign Countries
 - Coding scheme is motivated by literature review
 - Use these annotations to estimate category proportions across full data set

- Expand data set
 - Look for accounts that match properties of leaked accounts
 - Repeat analyses with these accounts
 - Conduct surveys of suspected 50c party members
Content Analysis [King et al. 2017]

FIGURE 3. Content of Leaked and Inferred 50c Posts, by substantive category (with details in Appendix A) and analysis (given in the legend)

Cheerleading: Patriotism, encouragement and motivation, inspirational quotes and slogans
Social Science

- Defining the research question is half the battle
- Data can be messy and unstructured
- Careful experimental setup means controlling confounds -- make sure you are measure the correct value
- Prioritize interpretability (plurality of methods)

Traditional NLP

- Well-defined tasks
- Often using well-constructed data sets
- Careful experimental setup means constructing a good test set -- usually sufficient get good results on the test set
- Prioritize high performing models
Twitter recently released troll accounts

- Information from 3,841 accounts believed to be connected to the Russian Internet Research Agency, and 770 accounts believed to originate in Iran
- 2009 - 2018
- All public, nondeleted Tweets and media (e.g., images and videos) from accounts we believe are connected to state-backed information operations

- What can we do with this data?

https://about.twitter.com/en_us/values/elections-integrity.html#data
What can we do with this data?

- *When* are posts most common? What events trigger tweets?
- What *content* is common? Argumentative? Cheerleading?
- What *stance* do tweets take? Do they take stances at all?
- What *impact* to tweets have? Which ones get favorited the most? Who follows/favorites them?
- *Who* do the tweets target? Who do the accounts follow?
- How much *coordination* is there? Do different IRA accounts retweet each other?

https://about.twitter.com/en_us/values/elections-integrity.html#data
@katestarbird
https://medium.com/@katestarbird/a-first-glimpse-through-the-data-window-onto-the-internet-research-agencys-twitter-operations-d4f0eea3f566
Hashtag Use Over Time by IRA Accounts

#ukraine
#mh17
#news
#politics
#pjnet
#tcot
#blacklivesmatter
#trump
#parisattacks
#maga
#sethrich

Tweets per Week

@katestarbird
https://medium.com/@katestarbird/a-first-glimpse-through-the-data-window-onto-the-internet-research-agencys-twitter-operations-d4f0eea3f566
Accounts that tend to retweet each other related to the #BlackLivesMatter Movement

Left-leaning

Right-leaning

https://medium.com/s/story/the-trolls-within-how-russian-information-operations-infiltrated-online-communities-691fb969b9e4
Ethical Concerns?

11-830: Computational Ethics for NLP
Methodology
Overview [Grimmer & Stewart, 2013]

- Classification
 - Hand-coding + supervised methods
 - Dictionary Methods

- Time series / frequency analysis

- Scaling (Map actors to ideological space)
 - Word scores
 - Word fish (generative approach)

- Clustering (when classes are unknown)
 - Single-membership (ex. K-means)
 - Mixed membership models (ex. LDA)
Topic Modeling: Latent Dirichlet Allocation (LDA)
General Statistical Modeling

- Given some collection of data:
 - Assume you generated this data from some model
 - Estimate model parameters

- Example:
 - Assume you gathered data by sampling from a normal distribution
 - Estimate mean and stdev
LDA: Generative Story

- For each topic k:
 - Draw $\varphi_k \sim \text{Dir}(\beta)$

- For each document D:
 - Draw $\theta_D \sim \text{Dir}(\alpha)$
 - For each word in D:
 - Draw topic assignment $z \sim \text{Multinomial}(\theta_D)$
 - Draw $w \sim \text{Multinomial}(\varphi_z)$

φ is a distribution over your vocabulary (1 for each topic)

θ is a distribution over topics (1 for each document)
θ, φ, z are latent variables
α, β are hyperparameters
K = number of topics; M = number of documents; N = number of words per document
Recap: General Estimators [Heinrich, 2005]

Goal: estimate θ, ϕ

- MLE approach:
 - Maximize likelihood: $p(w \mid \theta, \phi, z)$
- MAP approach
 - Maximize posterior: $p(\theta, \phi, z \mid w)$ OR $p(w \mid \theta, \phi, z) \ p(\theta, \phi, z)$
- Bayesian approach
 - Approximate posterior: $p(\theta, \phi, z \mid w)$
 - Take expectation of posterior to get point estimates
LDA: Bayesian Inference

Goal: estimate θ, φ

Bayesian approach: we estimate full posterior distribution

$$p(\theta, \phi, z|w) = \frac{p(\theta, \phi, z, w)}{p(w)}$$

$p(w)$ is the probably of your data set occurring under any parameters -- this is intractable!

Solutions: Gibbs Sampling [Darlington 2011], Variational Inference
<table>
<thead>
<tr>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
<th>#9</th>
<th>#10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>he</td>
<td>court</td>
<td>had</td>
<td>sunday</td>
</tr>
<tr>
<td>30</td>
<td>tax</td>
<td>his</td>
<td>law</td>
<td>quarter</td>
<td>saturday</td>
</tr>
<tr>
<td>11</td>
<td>year</td>
<td>mr</td>
<td>case</td>
<td>points</td>
<td>friday</td>
</tr>
<tr>
<td>12</td>
<td>reports</td>
<td>said</td>
<td>federal</td>
<td>first</td>
<td>van</td>
</tr>
<tr>
<td>15</td>
<td>million</td>
<td>him</td>
<td>judge</td>
<td>second</td>
<td>weekend</td>
</tr>
<tr>
<td>13</td>
<td>credit</td>
<td>who</td>
<td>mr</td>
<td>year</td>
<td>gallery</td>
</tr>
<tr>
<td>14</td>
<td>taxes</td>
<td>had</td>
<td>lawyer</td>
<td>were</td>
<td>iowa</td>
</tr>
<tr>
<td>20</td>
<td>income</td>
<td>has</td>
<td>commission</td>
<td>last</td>
<td>duke</td>
</tr>
<tr>
<td>sept</td>
<td>included</td>
<td>when</td>
<td>legal</td>
<td>third</td>
<td>fair</td>
</tr>
<tr>
<td>16</td>
<td>500</td>
<td>not</td>
<td>lawyers</td>
<td>won</td>
<td>show</td>
</tr>
</tbody>
</table>
LDA: Evaluation

- **Held out likelihood**
 - Hold out some subset of your corpus
 - Says NOTHING about coherence of topics

- **Intruder Detection Tasks [Chang et al. 2009]**
 - Give annotators 5 words that are probable under topic A and 1 word that is probable under topic B
 - If topics are coherent, annotators should easily be able to identify the intruder
LDA: Advantages and Drawbacks

● When to use it
 ○ Initial investigation into unknown corpus
 ○ Concise description of corpus (dimensionality reduction)
 ○ [Features in downstream task]

● Limitations
 ○ Can’t apply to specific questions (completely unsupervised)
 ○ Simplified word representations
 ■ BOW model
 ■ Can’t take advantage of similar words (i.e. distributed representations)
 ○ Strict assumptions
 ■ Independence assumptions
 ■ Topics proportions are drawn from the same distribution for all documents
Beyond LDA
Problem 1: Topic Correlations

- **LDA**
 - In a vector drawn from a Dirichlet distribution (θ), elements are nearly independent

- **Reality**
 - A document about biology is more likely to also be about chemistry than skateboarding
Solution to Problem 1: Correlated Topic Model [Blei and Lafferty, 2006]

- For each topic k:
 - Draw $\varphi_k \sim \text{Dir}(\beta)$

- For each document D:
 - Draw $\theta_D \sim \text{Dir}(\alpha)$
 - Draw $\eta_D \sim N(\mu, \Sigma)$; $\theta_D = f(\eta_D)$
 - For each word in D:
 - Draw topic assignment $z \sim \text{Multinomial}(\theta_D)$
 - Draw $w \sim \text{Multinomial}(\varphi_z)$

φ is a distribution over your vocabulary (1 for each topic)

θ is a distribution over topics (1 for each document)

$\Sigma = \text{Topic covariance matrix}$
Solution to Problem 1: Correlated Topic Model [Blei and Lafferty, 2006]

- For each topic k:
 - Draw $\phi_k \sim \text{Dir}(\beta)$

- For each document D:
 - Draw $\theta_D \sim \text{Dir}(\alpha)$
 - Draw $\eta_D \sim \mathcal{N}(\mu, \Sigma)$; $\theta_D = f(\eta_D)$
 - For each word in D:
 - Draw topic assignment $z \sim \text{Multinomial}(\theta_D)$
 - Draw $w \sim \text{Multinomial}(\phi_z)$

ϕ is a distribution over your vocabulary (1 for each topic)

θ is a distribution over topics (1 for each document)

$\Sigma = \text{Topic covariance matrix}$

Warning: Inference is harder!
Problem 2: Topics are drawn from same prior for all documents

- **LDA**
 - The topic distributions (θ) are drawn from the same distribution Dir(α) for all documents

- **Reality**
 - We often use LDA to look at how topics vary across documents
 - Example
 - We run LDA on a corpus of campaign speeches.
 - Look at topic prevalence in Republican speeches and Democratic speeches
 - Conclude Republicans talk about immigration more than Democrats
 - But we’ve assumed that all speeches are drawing topics the same way
Solution: Structured Topic Model [Roberts et al. 2016]

Topical prevalence: the proportion of document devoted to a given topic

Topical content: the rate of word use within a given topic

X - matrix of covariate information
Y - matrix of covariate information

Example:
- Analyze a corpus of news articles
- Topic prevalence covariates (X): date article was written, news agency
- Topic content (Y): news agency [do different agencies cover topics in different ways?]
Solution: Structured Topic Model [Roberts et al. 2016]

Topical prevalence: the proportion of document devoted to a given topic

Topical content: the rate of word use within a given topic

X - matrix of covariate information
Y - matrix of covariate information

Key contributions:
- Flexibly incorporate document-level metadata
- Allows correlations between topics
STM Example

21-year corpus on media coverage of grey wolf recovery in France

Nice-Matin = local newspaper
Le Monde = national newspaper

Topic 6: “Lethal Regulation”

https://www.structuraltopicmodel.com/
[Chandelier et al. 2018]
Summary

● Aspects of social science questions
 ○ Hard-to-define research questions
 ○ Messy data
 ○ “Explainability”
 ○ Ethics

● Topic Models
 ○ Generative story of LDA
 ○ LDA limitations and extensions
Why Computational Social Science?

“Despite all the hype, machine learning is not a be-all and end-all solution. We still need social scientists if we are going to use machine learning to study social phenomena in a responsible and ethical manner.” [Wallach 2018]
References